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ABSTRACT
In this work, Machine Learning approaches were applied to attack-
ing behaviors in RoboCup Small-Size League autonomous robot
soccer. Neural networks were used in order to get a binary pre-
diction of an attacking action’s success, while deep reinforcement
learning was leveraged to learn low level skills which control the
robot’s wheel speeds and kicker. A trained neural network was
used to predict whether a shot would be successful, improving the
number of goals scored by the attacking behavior by 84 to 186%.
The reinforcement learning methodologies used in this work pro-
duced behaviors which were efficient in speed, beating manually
programmed behaviors in time taken, but can benefit from future
refinements to improve accuracy in shooting towards goal.

Keywords: AI, Deep Reinforcement Learning, SSL, Robot Soc-
cer.

1. Introduction
In Small-Size League (SSL)[1] robotics soccer, decision making is
integral to a team’s performance. This work focuses on two inde-
pendent methods of applying machine learning (ML) to decision
making; using neural network (NN) predictors to predict the suc-
cess of a goal and using deep reinforcement learning (RL) to learn
skills, or low-level behaviors, which control a robot’s low level ac-
tions.

Robots playing offense may be faced with choosing between
shooting to score or passing to a teammate. Plays oriented around
passing are recognized as effective strategies in SSL games, high-
lighting the significance of this decision[2]. Classical methodolo-
gies used by SSL teams[3, 2] to determine whether a robot should
shoot the ball towards a goal utilize analytical geometry; leverag-
ing functions and algorithms which may make use of the distance
from the ball towards the goal and the area between goal posts un-
obstructed by opponents. Examples of these classical methods may
be visualized in Figure 1. ML methodologies, such as linear logis-
tic regressors (LLR) or NNs, can be applied to a collection of shots
to learn functions or train models for predicting the outcome of a
shot. This work focuses on training a NN for predicting the success
of a goal, with similar accuracies to related works[4]. Additionally,
this work provides a comparison against a naive LLR and analyzes
the performance impact of deploying a trained NN into an attacking
behavior.

RL has been applied to SSL to learn multi-agent control strate-
gies[5], where the action space consists of picking between prede-
fined behaviors, as well as low-level skills[6]. This work follows
the methodology proposed by Schwab et al.[6], employing Deep

Figure 1: Visualization of the classical methods utilized in shooting
towards goal.

RL to train models which control the robot’s low-level actions, such
as velocities and kicking mechanisms.

2. Related Works
In the work of Naito et al.[4], the KIKS SSL team used NN pre-
dictors for predicting the success of passing and shooting towards
goal, achieving an accuracy of 84% on testing data. Their data set
consists of more than one hundred data points sampled from grSim,
although it is not specified if each sample is taken from an indepen-
dent shot. Their testing set contains 50 samples. The NN architec-
ture deemed most successful by KIKS has 3 fully connected layers,
with batch normalization and affine layers between the dense lay-
ers, with its input being the velocity of the ball, distance between
the ball and an opponent, as well as the angle between the ball and
an opponent. A NN may be advantageous to use in place of a LLR
in order to learn from non-linear relationships between the features
of the data, however, the work of KIKS does not provide a compar-
ison of the performance of their NN against any other ML schemes.

Schwab et al.[6] utilized the Deep Deterministic Policy Gradi-
ent (DDPG)[7] algorithm in order to learn low-level skills for SSL
soccer. In their work, they were able to train NN models which
learned skills for traveling towards a ball, as well as aiming and
shooting towards goal. Schwab et al.[6] adopted the methodol-
ogy of burning in the replay buffer from DDPG from Demonstra-
tions (DDPGfD)[8]; accomplished by filling up the replay buffer
with samples obtained from demonstrations of a good behavior.
DDPGfD employs other modifications to DDPG, such as the use of
a prioritized replay buffer and n-step returns[8]. Other variations of
DDPG, such as Distributed Distributional DDPG (D4PG)[9], share
the use of these additions and have shown success in learning, even
when faced with sparse rewards. The work of Schwab et al.[6] does
not mention adopting any additional modifications to the original
DDPG other than replay buffer burn-in.
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The DDPG algorithm is an actor critic algorithm used for deep
RL in continuous action spaces[7]. DDPG is trained off-policy with
a replay buffer; therefore, the networks can be updated using expe-
riences obtained at any time during its training. Throughout the
training process, the agent acts within an environment and stores
experiences inside of the replay buffer. The experience consists of
a state, s, action, a, reward obtained at the following state, r, and the
following state s′. Thus, the experience can be defined as (s,a,r,s′).
During the training process noise may be added to the actions. Ad-
ditionally, early on in the training process entirely random actions
may be taken in order to encourage exploration[10]. The critic, Q,
is updated using the mean squared Bellman error function in Equa-
tion (2). DDPG makes use of target networks, which have delayed
updates to improve stability in learning, in order to approximate the
Bellman equation, defined in Equation (1)[7].

yt = r+ γQtarg(s′,µtarg(s′)) (1)

loss =
1
|B| ∑

(s,a,r,s′)∈B
(Q(s,a)− yt))

2 (2)

The actor, µ , is updated with the loss function defined in Equa-
tion (3), performing gradient ascent on the output of the critic.

loss =− 1
|B| ∑

s∈B
(Q(s,µ(s)) (3)

At a high level, the critic learns to estimate all future rewards
from taking an action in a given state, while the actor learns to take
actions in order to maximize future rewards.

rSoccer[11] provides an open-source RL framework for SSL and
Very Small Sized Soccer (VSSS) leagues with the goal of allowing
for more research into this area. rSoccer facilitates the applications
of RL to SSL by providing a SSL simulator suited for RL, as well as
providing framework for creating OpenAIGym[12] environments.

3. Method
This work was done using the RoboBulls software system with gr-
Sim[13], a SSL soccer simulator, as the simulated environment for
data collection for the NN predictor, as well as final benchmarks.
The deep RL models were trained using the rSoccer[11] frame-
work, and loaded into the RoboBulls software system as Torch-
Script modules. Similarly, the NN predictors were trained using
TensorFlow in python, and loaded via the Tensorflow C++ API.

In this work, the RoboBulls Attack Main behavior was used for
comparison against the behaviors with ML applications. The base-
line behavior determines whether it can shoot by breaking the goal
area into discrete segments, visualized in Figure 2, and then check-
ing whether each segment is deemed a clear shot. Each segment
is determined clear or not clear by evaluating if an opponent robot
is within a certain distance from the straight line between the ball
and goal segment. This can be visualized in Figure 3. After con-
ducting this process on each segment, the largest group of adjacent
segments is chosen, and the mid-point is used as the target point
for the attacking robot to shoot. If there is no clear segment, the
robot will not shoot. In order to improve upon the methodology
of the baseline, other factors, such as the distance and angle to the
goal, may be used in order to predict whether or not the shot will
be successful[2].

In order to train a model for predicting the success of a shot,
a data-set of 542 shots was collected for training, with 201 shots

Figure 2: Visualization of checking clear shots by segments, using
a small number of segments for clarity[14].

Figure 3: Visualization of distance tolerance for detecting a clear
shot[14].

collected for testing. These shots were collected utilizing a single
attacker and a single goalie. Information about the orientations of
the two robots, as well as the target goal point was obtained when
the attacking robot issued the kicking command. The success of
the goal was stored when the ball entered the goal area or made
contact with the goalie. In order to speed up the data collection
process, due to the RoboBulls goalie being proficient at defending
against a single attacker, the goalie was restricted to operating at
half-speed. Two scenarios were used to collect the data in order to
collect shots taken with a variety of positions. In the first scenario,
the attacking robot started on its home side of the field with the
ball, and was allowed to travel freely towards the opposing team’s
goal area, shooting when it came within a determined range of the
goalie. Within this scenario, two ranges were utilized: mid-range
and close-range. Due to potential biases in the robot’s chosen path,
collecting shots only utilizing this scenario could result in the data
containing only shots taken from similar positions. In the second
scenario, the robot was placed in the opposing team’s side of the
field within varying sections of the field, and was allowed to shoot
as long as it did not leave its section. In the second scenario, the
robot remained relatively stationary. More details regarding the
data collection process can be found alongside the full analysis of
this research[14].

After collecting the data-set a NN architecture similar to KIKS[4]
was utilized, which can be seen in Table 1. The model was trained
using 33% of the training data as a validation set for early stopping.
The NN would take the features in Equation (4) as input.

input = (θrobot−opp,dgoal,dopp,P′
x opp

,P′
y opp

) (4)

θrobot−opp is the difference between the orientation of the robot and
the angle to the opponent robot, dgoal is the distance between the
ball and target goal point, dopp is the distance between the shooting
and opponent robots, and P′

x opp
and P′

y opp
is the location of the op-

ponent relative to the shooting robot. In addition to training a NN,
stratified 10-fold cross validation[15] was repeated 10 times along-
side the corrected resampled paired t-test[16] in order to provide
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Table 1: Neural network architecture.

Layer # Units # Activation
Batch Normalization - -

Dense 6 ReLU
Batch Normalization - -

Dense 3 Swish
Output 1 Sigmoid

a comparison against a LLR. The NN architecture was compared
against the LR twice, using 33% and 25% of its allocated training
split for early stopping. Reducing the size of each split used for
early stopping was done to mitigate the issues of the NN starving
itself of data, as it would already be trained on limited data.

The trained model was then deployed into the Attack Main be-
havior, creating the AttackNN behavior. In addition to the distance
tolerance check used in the baseline behavior, the NN predictor was
used to evaluate segments deemed clear, disqualifying any clear
segment that the NN deemed would result in an unsuccessful goal.

Two low-level skills were learned by using DDPG: Go-To-Ball
and Shoot-Towards-Goal. The state, action, and reward definitions
were used and modified from CMU’s work[6]. The equations uti-
lized variables obtained in relation to the robot. Spinning Up’s[10]
implementation of DDPG was utilized, with modifications to allow
for exporting TorchScript modules.

The Go-To-Ball skill’s state definition, seen in Equation (5), uti-
lizes the difference in orientation between the robot and the ball,
θball, the distance to the ball, dball, and the linear and angular ve-
locities of the robot, Vx robot ,Vy robot , and Vθ robot . The action space, de-
fined in Equation (6), consists of controlling the robot’s linear and
angular velocities. The reward function, in Equation (10), consists
on a reward based upon the distance to the ball, whether or not the
robot is within 200 meters of the ball, and the difference between
the robot’s orientation and the angle to the ball. The definitions
for the aforementioned equations are in Equations (7, 8, 9). The
episode ended when the robot successfully came within 0.2 meters
of the ball or when 9.9 seconds had elapsed.

s = (sin(θball),cos(θball),dball,Vx robot ,Vy robot ,Vθ robot) (5)

a = (Vx,Vy,Vθ ) (6)

rcontact =

{
100 dball ≤ 0.2
0 dball > 0.2 (7)

rdistance =
5√
2π

exp(
−d2

r−b
2

)−2 (8)

rorientation =
1√
2π

exp(−2
θr−b

π2 ) (9)

rtotal = rcontact + rdistance + rorientation (10)

The Shoot-Towards-Goal state space, defined in Equation (3),
contains the position of the ball, velocity of the ball, distance to
the mid-point of the goal area, as well as the orientation differ-
ence between the top and bottom goalposts. The action space, seen
in Equation (11), contains the angular velocity of the robot and
whether or not the robot should kick. The reward function contains
a reward for facing the goal, as well as a sparse reward for kick-
ing the ball towards goal, and penalties to avoid holding onto the
ball. α represents the angle between the top and bottom goalposts
in relation to the robot’s position. β represents the difference in
orientation between the robot and whichever goalpost results in a

Table 2: Results of the corrected resampled paired t-test. ā is the
mean accuracy of the NN, b̄ is the mean accuracy of the LLR, x̄
is the mean of the paired difference. The percentage of the NN’s
allocated training data used for early stopping is shown.

% Early Stopping ā b̄ x̄ s2 t p
33% 87.4024 84.4512 2.9512 18.5950 1.9666 0.0520
25% 87.5478 84.5923 2.9556 17.0759 2.0552 0.0425

larger value. For Equation (12), the robot receives a reward in pro-
portion to the ball’s velocity when it is facing the goal, as well a
penalty in proportion to the ball’s velocity when facing away from
the goal. Equation (13) was introduced to mitigate issues involving
the local maxima present in Equation (12), where the robot will be
penalized for any motion when facing away from the goal. Without
this addition, learned skills would never orient the robot towards
the goal, in order to avoid receiving a penalty. The robot receives a
reward when it has kicked towards the goal, but is penalized when
the robot is not facing the goal, or is facing the goal but is still
holding onto the ball. The episode would end when the robot has
successfully shot the ball into the goal area, unsuccessfully shot the
ball outside of the field, or 3 seconds elapse.

s = (Px ball ,Py ball ,Vx ball ,Vy ball ,Vθrobot ,dr−g,sin(θtop),cos(θtop),

sin(θbottom),cos(θbottom))

a = (Vθ ,K) (11)

rface−goal =

{
0.05(α −β )|V B| α ≥ β

(α −β )|V B| α < β
(12)

rkick =

{
10 α ≥ β ∧ Just Kicked
-0.25 α < β ∨ ¬ Kicked

(13)

rtotal = rface−goal + rkick (14)

In order to test the performance of the learned skills, the skills
were combined, with the addition of a manually programmed inter-
mediate state for picking up the ball, to create the Go-To-Ball-And-
Shoot behavior. The new behavior was tested against the Attack
Main behavior and a human participant operating a robot with a
video game controller. The robot was placed in its home side goal-
keeper area, and would travel towards the ball and shoot towards
the opposing team’s unattended field goal. The ball was placed in
two positions encompassing two trials; Trial 1, where the ball was
placed in the center of the field, and Trial 2, where the ball was
placed at the coordinates (0, 1.5), in meters.

4. Experiments and Results
The results of the corrected resampled paired t-test can be seen in
Table 2. The comparison that utilized a NN which would hold aside
33% of its data for early stopping did not achieve a statistically
significant difference between the performance of the NN and the
LLR. However, the NN that would set aside 25% of its allocated
training data did achieve a statistically significant difference.

The trained model which was selected achieved an accuracy of
85.07% on the testing data, with the confusion matrix seen in Ta-
ble 3. Deploying the trained NN into the AttackNN behavior re-
sulted in the attacking robot achieving 80 goals out of 100 attempted
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Table 3: Neural network confusion matrix for results on the test set.

Predicted
Failure Success

Actual Failure 102 20
Success 10 69

Table 4: The average time taken for each skill, comparing RoboB-
ulls baseline behaviors to the reinforcement learning implemented
behaviors.

(a) Trial 1

Behavior GoToBall Shoot Total # Goals
µ s2 µ s2 µ s2

DDPG 2.9217 0.0008 0.2604 0.0027 3.1821 0.0048 23
Basline 3.4998 0.0040 0.2665 0.0006 3.7662 0.0044 25
Human 3.483 10.9620 0.4032 0.1709 3.8862 12.8650 25

(b) Trial 2

Behavior GoToBall Shoot Total # Goals
µ s2 µ s2 µ s2

DDPG 3.1262 0.0196 0.4031 0.0012 3.5294 0.0196 21
Baseline 4.9846 0.0141 0.4713 0.0057 5.4560 0.0193 25
Human 3.1691 0.3725 1.1236 0.3481 4.2927 1.1300 14

shots against the half-speed goalie. This is an 186% improve-
ment in the amount of successful shots as compared to the base-
line, which only achieved 28 of its 100 attempted goals. When
facing the full-speed goalie, the AttackNN behavior had an 84%
improvement, achieving 35 of 50 shots compared to the baseline
only achieving 19 of 50.

The results of the trials to compare the RL learned behavior can
be seen in Tables 4a and 4b. The RL learned behaviors consistently
outperformed the baseline behavior and human participant in terms
of time taken to complete each skill. The RL learned behaviors suf-
fered in accuracy towards shooting towards goal, missing 5 goals as
compared to the baseline which successfully scored each attempted
shot. However, the RL behavior was more succesful than the hu-
man, which missed 11 shots. The variance in time taken for the RL
behaviors are more similar to the hand-programmed behaviors than
the human operator.

5. Conclusions
The adoption of a NN into the RoboBulls attacking behavior in-
creased the number of successful goals against the half-speed goalie
used in the data collection process by 186%, and the full-speed
goalie by 84%. Comparing the performance of the NN approach
against a naive LLR using repeated 10-fold cross validation and
the corrected resampled paired t-test suggests that there may be ad-
vantages of using an NN predictor to learn non-linear relationships
within the data, but future works should attempt to gather more data
with less bias, and feature selection should be revisited in order to
allow the NN to take advantage of additional inputs, such as the
velocity of the opposing robots. In this work, a single goalie was
utilized in the data collection process. However, shots could be col-
lected from games or scenarios with more opponents to gather data
from more dynamic situations.

The behaviors learned by the DDPG algorithm resulted in fast
behaviors, outperforming baseline in time taken, but achieving lower
shooting accuracies. Future works should employ the variations of
DDPG that adopt n-step returns and prioritized replay buffer, in or-
der to facilitate learning in more advanced scenarios that may use

sparse rewards[8, 9]. In order to produce skills which may be uti-
lized in SSL games, environments will need to be crafted around
realistic scenarios in order to learn skills which take into account
obstacle avoidance, to avoid colliding with robots on the field, and
shooting against an opponent goalie. The reward definition for the
Shoot-Towards-Goal skill has local maxima present in CMU’s def-
inition[6]; however, they likely mitigated this issue by leveraging
demonstrations in the learning process. This suggests the use of
DDPGfD[8] in future works to learn in the absence of meticulously
engineered reward functions.
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