17 Learning to Detour’

F. J. Corbacho and A. Weitzenfeld?

17.1 Introduction

Anurans (frogs and toads) show quite flexible behavior when confronted with stationary
objects on their way to prey evhen escaping from a thre&ana computatrix (Arbib,

1987), an evolving computer model of anuran visuomotor coordination, models complex
behaviors such as detouring around a stationary barrier to get to prey on the basis of an
understanding of anuran prey and barri@ogmition, depth perception, and appropriate
motor pattern generation mechanisms based on sensory perception. This chapter presents
a model of detour ifRana computatrix with an extension to learning of new schemas
“How are schemas combined to form new sch@ssemblages acquired for the system to
become more efficient?” We describe tlmmstruction mechanisms and interactions with

the environment necessary to achieve higher levels of detour performance. This chapter
describes a model that includes all these phenomena implemented in NSL. More details
on some of the model components can be found in (Corbacho and Arbib, 1995) whereas
Corbacho et al. (1996) present more behaviga#. This is a specific model in Schema-
based Learning (SBL) but it serves to exemplify some of the general points and mecha-
nisms included in the general framework ofLSBor the general framework we refer the
reader to (Corbacho, 1998).

In this chapter we present a Schema-based model of learning to detour including dif-
ferent schemas implemented in some casésnational units and in other cases as neural
networks. The motivation for the study of Learning to Detour in frogs as our case study
in Schema-based learning (SBL) is three-fold:

1. SBL is constrained by data on a neuro-ethologycally sound system -both the task, the
environment and the agent.

2. The study of Rana Computatrix allows for horizontal integration (across many inte-
grated functionalities) and not just vertical integration (action-perception within one
central functionality, e.g., saccadic eye movements).

3. Learning to Detour has proved to be a very adaptive process relaying on important
processes of learning (Corbacho et al., 1996).

Problem Background

Ingle (1983) and Collett (1983), to cite some examples, have observed that a frog/toad’s
approach to a prey or avoidance from adhrare also determindxy the stationary ob-

jects in the animal's surround. A frog orath viewing a vertical paling fence barrier
through which it can see a wormmay either approach directtp snap at the worm, or
detour around the barrier. However, if no worm is visible, the animal does not move.
Thus, it is the worm that triggers the animaksponse but, when the barrier is present,
the animal’'s trajectoryo the worm changes in a wayathreflects the relative spatial
configuration of the worm and the barrier. Corbacho and Arbib (1995) modeled the dif-
ferent behavioral responses to different barrier configurations, as well as the learning
involved in the behavioral transitions. The present section is based on behavioral studies
of frogs,Rana pipiens (Corbacho et al., 1996). Here we sample a few of our observations
of the main capabilities of frogs for detdoehavior that set challenges for our learning
model.



Experiment |: Barrier 10 cm Wide

Frogs that started from a long enough distance (15-25 cm) in front of a 10cm wide
barrier (and with the worm 10 cm behind the barrier) showed (in 95% of the trials)
reliable detour behaviors from the first interaction with the 10 cm barrier. They produced
an immediate approach movemédowards one of the edges of the barrier (see 17.1A).
This experiment shows that awlult frog has the capabilityithout training to perform
detours when the barrier is narrow enough (10 cm long) and the frog is at a far enough
distance (15-20 cm) from the barrier.

Experiment 11: Barrier 20 cm wide

From now on we will refer to a frog which has not been exposed to the barrier paradigm
as naive. If the chopsticks are placed the sdisance apart, so that the gaps have the
same width, and the barrier is 20 cm wide, then the naive frog tends to go for the gap in
the direction of the prey (this was the case88% of the trials). The frog starts out ap-
proaching the fence trying to make its way through the gaps. During the first trials with
the 20 cm barrier the frog goes straight towards the prey thus bumping into the barrier.
When the frog is not able to go through a gap towards the prey it backs-up about 2 cm
and then reorients towards one of the neighboring gaps (see figure 17.1B).

Observation: After 2 (43%) or 3 (57%) trials, the frog is already detouring around the
barrier without bumping into the barrier (see figure 17.1C). The behavior involves a
synergy of both forward and lateral body (sidestep) movements in a very smooth and
continuous single movement.

Figure 17.1

A. Approach to prey with
single 10 cm barrier
interposed. B. Approach to
prey with single 20 cm barrier
interposed: first trial with frog
in front of 20 cm barrier
(numbers indicate the
succession of the
movements). C. Approach to
prey with single 20 cm barrier

10 4 interposed: after 3 trials with
5;& ;5% frog in front of 20 cm barrier.
1t s 275 Arrowheads indicate the

position and orientation of
the frog following a single
continuous movement after
which the frog pauses.

17.2 Model Description

We start by defining the environment ane tigent (frog in this case). The environment
provides the agent with an interaction space. Ultimately the behavior of any agent is very
dependent on its environment so that the behavior can only be understood in relation to
the synergy agent-environment. In order to define the structure of the agent we start by
defining the spaces of interaction/commutiara with the environment and then follow

with the functional units that constitute the agent.

Definition. An Environment is a space that includes a collection of entities and their
relations (interactions). A particular instance configuration at timél be denoted as
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Environment(t). Environment is a 150x150 grid wherdifferent entities e.gfrog(x:s),
barrier (xp,yp,Wh,g). The simulation system contains simplifi&hvironment functions
designed to allow for an adequate interaction between the simulated agent and its envi-
ronment, for instance the simtitan system performs simplelits” of the agent’s visual

field as it moves in the environment and its coordinates change. The environmental func-
tions will be described in more detail in the Model Architecture section.

Basically, the visual field of the agt corresponds to a sector of taavironment,

and the coordinates of this sector are uptlatethe agent movesoand. This 2D sector
corresponding to the agent’s visual field is projected upon the retina of the agent, which
is the front-end visual perception system. &@lgent may also perform several actions that

may cause environmental and agent parameters to change. Table 17.1
Frog schemas according to

Component Schemas:. Architecture their functional (schema
The detour model incorporates schemas (functional units) and neural modules (strugtifighd structural
units) described in table 17.1 and shown in figure 17.2. organization (neural level).

Function \ Schema Level Modules Neural Level Modules \

Perceptual Visual, Depth, Tactile, PreyRec, SoRec Retina, T5_2layer, TH10layer
Motor Heading Map (MHM)

Sensorimotor PreyApproach, SoAvoid

Motor Forward, Orient, Sidestep, Backup

Prey
Recognizer  Prey Approach Figure 17.2
Visual = | Forward Schema Architecture for Detour
- ™~ ',_) Model consisting of two levels: a
, | Orent schema level and a neural
i | —>
| D i networks level. The schema level
; B — < < —> consists of Perceptual Schemas:
> ""_ I I \ ||/ Sidestep Visual and Tactile, Prey
e | o {saiclhes) | oot sonatoa  eounion SOt
-------- e e e e Recognition (SOR);
T52 layer & / Neural L evel Sensorimotor Schemas: Prey
i i : ‘," Approach and Static Object
i W' T Avoidance; and Motor Schemas
d . Orient, Forward, Sidestep and
<rs /Y Backup. The neural level
R> -m’ consists of four modules: Retina,
Retina Motor T5_2layer, TH10layer and the
TH10 layer Heading Motor Heading Map (MHM).
Map

Per ceptual Schemas
Perceptual schemas involve both sensors and recognizers based on these sensors.

Visual
The Visual schema simulates a visual sensor discriminating among different objects in
the visual field, mainly prey and barrier in this model.

Depth
The Depth schema generates a depth map for the objects of interest, primarily barrier in
order to avoid hitting it and gerating appropriate responses according to how close the

frog is to it.
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Tactile

When the frog hits anbject, in the cuent case the barrier, the Tactile schema gets trig-
gered. The simulation environment checks wkiem frog comes level with the barrier
(equal y-coordinates), and then checksetbr there is a passable opening (we have
chosen 3 cm wide or more for our simulations—this would change as the frog grows) at
the frog’s current x-coordinate. If the gap is not passable then the Tactile schema gets
triggered:

if f, =b, andtheclosest tof, islessthan3cmwise

Tactile= o
%) otherwise (17.1)

where (fx,fy) are the (x,y) coordinates of the “snout” of the simulated frog in the 2D
world, and k is the “depth” coordinate of the barrier.

Prey Recognizer

Cervantes-Perez et al. (1985) presentatktailed neural network implementation for
prey recognition. Here we present a schema (PreyRec) that approximates this neural
network mapping. The presence of prey within the visual field of the animal produces a
2D pattern of activity in the prey recognition system, while absence of prey leaves the
system at rest. This is here implemented by simplified feature detectors but it is open to
more detailed implementations.

Ewert (1971) found in toad’'s pretectum near the ventral part of the pct (postero-
central thalamic nucled), units that give continued disrge in the presence of a large
dark stationary object. This occurred evenewtihe stationary obgt was revealed by
turning on the room lights without prior motion: Class th10 neurons—with an ERF of
about 30—-90°—exhibit prolonged discharge to large contrast stimuli that are stationary in
their ERF.

Static Object Recognizer

A model of Stationary Object Recognition in anurans was proposed by Lee (1994) based
on these findings. In this paper we provide a schema (SorRec) that approximates this
model providing the output through the th10 cells map.

Sensorimotor Schemas
Sensorimotor schemas integrate between sensory perception and motor action.

Prey Approach
Epstein (1977) introduced, and Arbib & House (1987) refined, the notion of prey attrac-
tant field. A prey sets up a symmetric attiant field whose stngth decays gradually
with distance from the prey. Arbib & House (1987) described the mask for prey objects
as projecting very broadly in the lateral direction and somewhat less broadly in the for-
ward direction This “prey-attictant-field” represents tHecation of the stimulus accu-
rately as the center of mass of the repriegem. It also provides the system with
neighbor positions available as targets wire accurate position impossible to reach,
thus providing the system with a cearepresentation of prey location.

PreyApproach projects this excitatory field onto the MHM (motor heading map)
explained below. We hypothesize the projection of activity giving rise to coarse coding of
prey location.

prey(i,j,t) @kp(i.j) (17.2)

where i and j are indices for 2D arrays of neurons, tis tignes & kernel, and @ denotes
spatial convolution. In general, each kernetha present model wibe a truncated Gaus-
sian of the general form
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AWV exp[-(x® +y?)/2s?] if x* +y? <R?

k(x y,t) =
oy %) otherwise (17.3)

whereR is the receptive field size.

Static Object Avoid
Analogously, the model also includes a repllector field assoated with each fence
post. Its effect is more localized to its point of origin than is that of the prey field.

th10( ,j,t) @k i j,t) (17.4)

We hypothesize the inhibitory pattern of connectivity to be also Gaussian shaped.

Bump Avoid

The BumpAvoid schema produces a reorientation that triggers the projection of an activ-
ity pattern (with quite lage eccentricity) to th&HM. This field gives rise to excitation

on the neighbor regions thus encoding the reorientation under bumping. It takes the form
of

reorient(i,t) (17.5)

Motor Heading Map

Cobas and Arbib (1992) propose that a motor heading MEM) determines the direc-

tion to jump: i.e., prey-catching and presladivoidance systems share a common map for
the heading of the responding movements (coded in body coordinates), as distinct from a
common tectal map for the direction of the stins. Note that the direction of prey and

the direction of prey catching are the same theatdirections of aredator and the escape

are different. Thus, in the latter case, thessey map and the motor map must be distin-
guished. Projections to thdHM must differ depending on whether a visual stimulus is
identified as prey, gdator or obstacle.

In our model, the outputs of the previously defined schethd® andprey(T5 2)
respectively) are projected kdHM through kernels.

In the current study the “neural field” generated intéM will be 1D (vs. 2Dprey
andth10 maps) - we restrict here to the eccentricity component since the elevation com-
ponent is not important for the problem at hand. That is, the height of each fence-post (for
fences high enough that the frog could not jump over them) does not affect the detour
behavior. The eccentricity component which altyuapresents the target heading angle
in the MHM will be the key “feature” in determining the sidestep to detour around the
barrier.

In our model, then, the total inplj to MHM becomes

lin(1,8) = 3 L0, J,0)* ks (i, J, 1)+ prey(i, j,0)* ke (i, ) (17.6)
J J
Thus the total input tMHM when including reorientation due to bumping becomes
lin(i,8) = S th10G, ) * ks(i, J,0) + 3 prey(i, j,t)* ke (i, j) + reorient(i,t)  (17.7)
] ]

Winner-take-all dynamics oveviHM assure the selection of the strongest target
angle, upon which a transfortian from retinotopic to mir coordinates takes place.
This is the input (besides different gating signals from the sensory apparatus) to the dif-
ferent motor schemas. The motor schemagheme selected baseghon competition and
cooperation dynamics. Corbacho and Arl§il995) present a wher-take-all model
(Amari & Arbib, 1977; Didday, 1976) which uses a competition mechanism to obtain a
single winner in the network.
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Heading Transform

The Heading Map in Cobas and Arbib (1992) is differentially connected with the Orient
schema depending on the region represented. The more lateral the stimulus is, the more
strongly the Orient schema will be activated. The central portion of the heading map has
a very light projection onto the oriented schema, and thus a prey falling into that region
will only elicit a weak activation and consequently a very small turning movement or
perhaps no turn at all.

We have implemented the transformation from spatially coded to population coded
in a similar manner. The output of the sensory motor transformation codes for the ampli-
tude of the target-heading angle. To perform the transformation we use a gradient of
weights with a “V” shape. The highest valaorresponding to the highest eccentricity.

angle(t) = z gradient(i)* O[1 (i, )] (17.8)

where “M" is a pointwise vector multiplication, and implements a thresholding function to
avoid producing an orienting response until the motor heading map “settles down” on a
target position. Before the winner-take-all dynamics settle down on a “winner” target
heading angle several clusters of activitay coexist in MHM corresponding to the
representation of several barrier gapMidM. We use (Eq. 17.8) so that during the win-
ner-take-all dynamics, the cluster of actiwitith higher amplitude vilireach this thresh-

old first as it is growing faster than any of the other clusters of activity. This enables the
model to avoid computing a heading angle that could be a linear combination of several
clusters of activity irMHM.

Motor Schemas

In the current model, motor schemas ar@lemented as functional units/black boxes
schematizing the neural interactions underlying behavior. The intrinsic motor patterns or
muscle activations are not simulated. When active they simply change the coordinates of
the agent (and/or environmehparameters) appropriately.

We postulate that each component of thieavéor (sidestep, orient, approach, snap,
etc.) is governed by a specific motor schema. We then see detour behavior as an example
of the coordination of motor schemas. Ingle (1980, 1983) has offered some clues as to the
possible neural correkes of the various schemas. Appahg thalamic and tectal visual
mechanism can operate somewhat independently (Ingle, 1973). Monocular frogs without
a contralateral optic tectum can quite accuydtecalize barriers, and while visual input
to the pretectal region of the caudal thalaimesliates barrier avoidance behavior, caudal
thalamic lesions produce an inability to sidestep stationary barriers set in the frog’s path
during pursuit of prey.

Among other motor schemas we provide the system with forward movement and lat-
eral (sidestep) movement. The forward schevhan active produces a movement in the
direction of the midsagittal axis of the body with frontal direction. The lateral sidestep
movement is a movement orthogonal to the sagittal midline. Backup movement is similar
to forward but in the opposite direction.

Cobas and Arbib (1992) proposed a general mechanism of motor pattern selection
through the interaction of motor schem&HM contains target location but motor
schema selection is the result of competition of many maps. Each of the motor schemas
has a threshold so that its action on the controlled musculature is only enabled when its
internal level of activation reaches or surpasses that threshold.

Schema Dynamics
Schemas consist of schema behavioral mappings and schema activity variables. The full
formalization is beyond the scope of this chapter; here simply mention that schemas
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correspond formally to port automata with activity variables indicating the degree of
confidence. The schema activity dynamicdeascribed by the leaky integrator. The equa-
tion describing the dynamics of the schema activity variables is

ds (t

(S0 03 50R,0 ar9)
]

where S is the result of a saturation by a sight@insfer function that guarantees that the

activity variables remain within the interval [-1, 1],

s®=0(sw) (17.10)

R is the matrix of supportt indicates how the activation of a schema supports the
activation of another schema. The leaky integrators time constants may be different for
different schema activation variables sirsmane schemas may have a faster dynamics
e.g. Tactile must reset quickly and with it BumpAvoid.

Schema Assertion

Schema assertion takes place when the sclhethaty variable surpsses certain thresh-

old hence indicating enough confidence on the application of that particular schema to
the particular context. Once asserted the schema mapping output is produced, this pattern
may in turn become the input for other schema mapping output. For many schemas once
they are asserted they must reset to avoid successivarealistic activations. For
instance once a motor schema has been asserted its activity variable is reset to 0.

Schema I nteractions

There are some “reflex” dynaos corresponding to fast pathys e.g. Tactile activates
Backup in one step (instantiation and adto@. Also Tactile must reset quickly and
with it BumpAvoid. Tactile momentarilynhibits Forward since otherwise Forward
would be too active and lower down Backup activity variable to the point where Backup
could not get activated. In general many schemas will be simultaneously active interact-
ing with each other, for instance Sidestad &orward schemas are simultaneously active
when “detouring” after learning.

17.3 Model Implementation

TheDetour model is composed of thgorld module—a 3D input stimulus librarky ey
andFrog modules, as shown in figure 17.3. The static objects, in this caS8arthier,
are interactively specifieddm the scripting language as opposed to the other two.

Detour Figure 17.3
Schema Architecture showing
— the top-level world topology.
worldXZ
xb_init xb_end yb zb wangle xf yf zf XW YW  zZw
xb_init xb_end yb zb wangle xf yf zfzw|e zw
worldXZ Frog yw yw Prey
XW XW
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worldXZ xfyf xb_init xb_end yb xw yw
+

Il 1 Frog
xb_init xb_end yb J
worldXZ xf ¢ » xf Depth Xw
visual Y P :
sud depthX depthx Tactile
visualField ps depthY depthY ps
|
visualField visualField
depthX
PreyRec SorRec
depthY
t5_2f ps th10f ps
t5_2f psfo th10f psso depthX psta
PreyApproach SorAvoid » depthY
BumpAvoid
preyHorf ps ps gapsf gaps
gapsf baf ps
» preyHorf psoa gapsf
+—» pSpa MHM baf
ps mhm
mhm
Mdls wtaMhm
v
psoa wtaMhm
I pspa
P Xform
angle PS M
l i T |
v v \
—psfo depthY psta angle psba psta psta psba
L—»{psd h psxie
psdp psmhm psm m Backup
Forward Sidestep psso f«—
out ps psbk out ps psfw out
| L ]
forward_step angle backward_step

World

We have provided for simple interactions with Werld module. We simulate a simpli-
fied 3D environment by defining two different 2D projections or viewa1dXY corre-

sponding to the top down view lgravailable to the user, amabrldXZ corresponding to
the view of an agent immerd in the environment. TheorldXZ view is used as visual

input to the frog.

Figure 17.4
Schema Architecture showing
the frog schemas topology.

The model takes advantage of the input layer components (see Appendix Il for

details) in generating external visual stimuli. MslinputFloat3 3d input layer of
sizex1xsizex2 in thex-direction andsizez1xsizez2 in thez-direction is instantiated by the

World module as follows,
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private NslInputFloat3 in(sizexl, sizex2,sizezl, sizez2)

Note that a theNslInputFloat3 input layer actually involves twblslinputFloat2
layers: arxy-matrix and axz-matrix corresponding two the two different views in the 3d
space. Input processinakes places as follows,

public void sinRun(){

in.run();
wor | dXZ = in.get_xzview);
}

Thein object is processed by applying a thie method to it. This generates a new
Xy-matrix together with a newz-matrix assigned taorldXZ for further processing in the
model.

Prey
The prey (worm in thisase) is a static entity (althdugnovement can be added to it,
such as twiggling). In the current versioe threy is described by its location and size.

Barrier

The obstacle (barrier in this e&ds also a static entity ogosed of multiple posts sepa-
rated by gaps, wide enough to let the frog see the prey behind it. The barrier gaps don't
let the frog pass through it and are tall enough so the Frog won't jump over it. The size
and gaps between barrier posts can be modifiedactively as will be seen later on.

Frog

The agent (frog in this model) is the hearthte detour model. The frog model includes a
number of perceptual, sensorimotor and motor schemas instantiated within the frog, as
shown in figure 17.4, and described each in the following sections.

Per ceptual Schemas

Perception for the frog in the model is basedvasual andTactile sensors, where also
Depth is computed. In particularthe frog perceives the preygpreyRec (Prey
Recognizer), and the barri@gRec (Static Object Recognizer).

Visual
The visual input to the frogorrespond to 2D image projections of the virtual 3D world
reflected on the eyes (or camerajtled agent. The model computesisualField corre-
sponding to the section @forldXZ that the frog can see at each time step. As the frog
moves - frog coordinated, yf change - theisualField needs to be recomputed.

The smRun methods computes the nexsualField from the completevorldXZ
view depending on the size of its receptor fiedckize

public void sinRun()
{
int recsize = visual Field. get Rows();
int isize = worl dXZ. get Rows();
int jsize = worl dXZ. get Col s();
visual Fiel d = worl dXZ. get Sector (i si ze-recsi ze,isize-1,
j sizel 2-recsi zel 2, si zel 2+recsi zel 2-1);
}

The getSector method obtains the portion of timrldXZ view perceived byisual-
Field.
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Depth
The Depth module computes the distance in betfepthX) andy (depthY) to the barrier
or prey depending on the Frog’s current position in the world. This information is passed
to the static object recognition and bump avoidance modules as well as the Forward
module in avoiding hitting the barrier. The module outpsitis a confidence level
describing wherepthY is greater thasafeDistance, wheresafeDistance corresponds to
the minimum distance the Frog should be to avoid hitting the barrier.

The ssimRun method computes the dynamic location of the frog, and then calculates
through simple subtractions the depth of the barrier and finallpsmnfidence level
that the frog is not too close to the barrier as output to other modules.

public void sinRun()
{

if (depthY > safeDi stance || depthX > safeDi stance)

ps = 2.0; /1 Go up fast
el se
ps = 0.0;
}
Tactile

The Tactile module simulates the frog hitting the barrier from its current position to the
barrier computed bpepth.

ThesimRun method computes the output confidence Iggadepending on whether
the frog is clos enough, botk andy, to the barrier.

public void sinRun()
{
if (depthY > 0 & & depthY <= safeD stance &&
dept hX <= saf eDi st ance)
ps = 2; /'l Go up fast
el se
ps = 0.0;
ps = nsl Sigma(ps, -1.0, 1.0, -1.0, 1.0);
}

Prey Recognizer

The Prey Recognizer (PreyRec) module recognizes and localizes prey stimuli within the
visual field of the frog. ThePrey is defined as a set of features. In this particular
implementation we have simplified this peptual schema a great deal (see Corbacho
and Arbib 1995 for a more detailed implementation). The module recamesField

input from the frog visual module and generates both an output confidence level and
simulates the behavior of tif& 2 neural cells.
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The smRun method computes the prey recamgri output in terms of filtering the
visualField for a prey stimulus.

public void sinRun()
{
t5 2 = DetourlLib.filter(visual Field,2);
if (nslSum(t5_2) >= 1)
ps=0. 9;
el se
ps=0;
ps = nsl Sigma(ps,-1.0,1.0,-1.0,1.0);
if (ps > th)
t5_2f = nsl Ranp(t5_2);
el se
t5_2f = 0;
}
In particular
t5_2 =DetourLib.filter(visualField, 2); (17.11)

defines a prey in terms of a feature “2” corresponding to preys. The function filters
out all elements in the matrix that do notvéa corresponding vaduin this case “2”.
This filtering function can be made more realistic including color, spatial frequency,
complex shape filters, etc.

The outputt5 2 is still a 2D map representing thetinotopic position of the prey
(vs. allocentric prey coordinates).

Since this is a “seed” perceptual schema it must also provide “seed support” for its
schema activation variabjes.

_ 0.9 if nsISum(5_2) >=1

S 17.12

P otherwise ( )
Then, once the schema is assensd; th,

t5_ X = nsIRampis_2); (17.13)

corresponding to the activation of the output port.

Static Object Recognizer
The Satic Object Recognizer (SoRec) module recognizes and localizes static objects
within the visual feld of the frog. The&xatic Object is defined as a set of features. The
module receivesisualField input from the frog visual module and generates both an
output confidence level and simulates the behavior ahtt@®eneural cells.

The smRun method computes the prey recaggri output in terms of filtering the
visualField for a barrier.
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public void sinRun()
{
thl0 = DetourlLib.filter(visual Field, 1);
if (nslSum(thl0) >= 1)
ps=0.9;
el se
ps=0;
ps = nsl Sigma(ps,-1.0,1.0,-1.0,1.0);
if (ps > th)
th10f = nsl Ranp(th1l0);
el se
thiof = O;
}

Similarly to thePrey Recognizer, the stationary object recognitidiiter stationary
objects,

th10 =DetourLib.filter (visualField, 1); (17.14)

corresponding to feature “1” fiming stationary objects.
Then, once the schema is assenpsd; th,

th10f = nsIRampih10); (17.15)

corresponding to the activation of the output port.

Sensorimotor Schemas
The frog model incorporates a number of sensorimotor scheRrayApproach,
SoAvoid, BumpAvoid, Motor Heading MapNIHM) and Heading TransfornX{orm).

Prey Approach
ThePreyApproach module integrates theorizontal projection ofs_2 cells generating a
1D representation (parcellation), since itnmre efficient to make the 1D projection
before convolving with the gaussian kernpteyHor corresponds tdhe eccentricity
component of therey attractant field (horizontal component).

TheinitSys method reinitializes variables to 0, sets the confidence level input weight
rsto 1, and initializes thexcitatory gaussian kerntg 2_erf,

public void initSys()
{
preyHor = O;
preyHorf = 0;
rsfo =1.0; // Prey & Prey Approach.
ps = 0;
Det our Li b. gauss2D(t5_2_erf,t5_2_erf_sig);
t5 2 rf =t5_2 erf_wgt * t5_2 erf;
}
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ThesmRun method computes the module activity,

public void sinRun()

{
preyF = t5_2_rf * t5_2f;
preyHor = nsl ReduceRow(preyF); // Parcellation:
hori zontal conp
ps = rsfo*psfo;
ps = nsl Sigma(ps,-1.0,1.0,-1.0,1.0);
if (ps >th) {
float mx = nsl Max(prey_hor);
if (mx '= 0.0)
prey_hor f = prey_hor/nx; // Nornmalize.
}
el se
prey_hor _f = 0;
}

Once the schema is assertBdeyHor contains the field (normalized by the maxi-

mum value) to be projected to the other modules K&-M).

Static Object Avoid

The SorAvoid schema is implemented in a similar manner. IT integittiEHor as the

1D horizontal component corresponding to a parcellated representation (C&3E@S).
corresponds to the inhibitogbstacle repellent field. Once the schema is assedps,

which is normalized by the maximum value, is projected to the other schemas (e.g.

MHM).

TheinitSys method reinitializes variables to 0, sets the confidence level input weight
rsto 1, and initializes the inhibitory gaussian kertmelirf and the final resulting kernel

tm_rf

public void initSys()

{
rsso = 1.0; // Obstacle & bstacle Avoid
ps = 0;
Det ourLi b. gauss1D(tmirf,tmirf_sig);
tmrf = - tmirf_wgt * tmirf;

}

ThesimRun method computes the schema activity,

public void sinRun()
{

t h10Hor = nsl ReduceRow(th10f); // Parcellation (from2D to 1D)
gaps = tmrf * thlOHor; /1 Convol ve wi th kernel

pPS = rsSso0*psso;
ps = nsl Sigma(ps,-1.0,1.0,-1.0,1.0);
if (ps >th) {
float nmx = nsl Max(gaps*-1);
if (mx '=0.0)
gapsf = gaps/ nx;
}
el se
gapsf = 0;
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Bump Avoid

The BumpAvoid schema contains two components: field projedtafifor reorientation

(avoid keeping bumping on the same point) and, tuning didih&void module.
ThesimRun method computes the activity as follows

public void sinRun()
{
if (depthY <= safeD stance && depthX <= saf eDi stance)
/1 Bunpi ng ps = 0;
el se
ps = -1.0; // G down fast: -2.0
if (tune_tm< 1.5) /] saturate tune_tm
tune_tm = tune_tm + tune_t m base;
tune_tm|ayer = tune_tm
tune_tm|layer = tune_tm./|ayer ~ nsl Step(-gaps);
gaps = gaps - tune_tml ayer;
gapsf = gaps;
ps = ps + rsta*psta;
ps = nsl Sigma(ps,-1.0,1.0,-1.0,1.0);
if (ps > th){
field center = field center + 2;
baf [fiel d_center.getValue()] = field A
}
el se
baf = 0;
}

The function modulates the kernel. Every time it bumps it increasestm until it
reaches a saturation point. It tunes the bartid field by inceasing eccentricity, modu-
lating only already active neams. Every bump it increasésne tm until it reaches a
saturation point.

Motor Heading Map
The Motor Heading Map (MHM) schema then integrates the different fighdeyHorf,
gapsf and baf. Another input taViHM, in, contains further modulating fields learned by

the system. In particular, it will contain fields generated by newly constructed schemas

(e.g. detour schema, at the moment the only one in the model).
ThesimRun method computes the schema activity,

public void sinRun()
{
if (d_nhm > d_norm && gapsf ! = 0)
{
baf [fiel d_center.getValue()] = field_A
in = baf; // New Field “inserted”
}
el se
in=20; // reset input (cf. antidronmic
mhm hat = nmhm
/] Predictive MHM
mhm = gapsf + preyHorF + baf + in;
/'l Fields over MHM
d_mhm = 0.03 * DetourlLib.dist(nmhm nhmhat);
ps = ps + rspa*pspa + rsoa*psoa;
ps = nsl Sigma(ps,-1.0,1.0,-1.0,1.0);
}
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The above code computes the dynamicMofor Heading Map (MHM), integrating
several fields, while new fields can alsodmded while learning. The “if” section com-
putes learning dynamics. It detects an incoherence and hence a trigger for a new schema.

Heading Transform
The winner take all selects a single target wher@xim returns the vector normalized
(subtraction) by its maximum, where only the maximum is above threshold (by 0.01).

public void sinRun()

{
wt a_nmhm = Det our Li b. maxi m( mhm) ;

}

Heading Transform
The Xform schema transforms from retinotopic (vector) to population code (scalar) the
representation of the target.

ThesimRun method computes the schema activity,

public void sinRun()
{
int i = nslAvgMvaxVal ue(wt a_nhn);
angle = 0;
if (i '=0)
angle =i - wta_nhm get Rows()/2;
ps = ps + rspa*pspa + rsoa*psoa;
ps = nsl Sigma(ps,-1.0,1.0,-1.0,1.0);
}

The method computes the transformation to population coding corresponding to
angle = nsISumg@radient ~ wtaMhm); (17.16)

coding the heading angle as a scalar (cf. population coding).

Motor Schemas
We have included three motor schemas as explained in the Model Description section,
forward, sidestep andbackup.

Forward

The Forward motor schema receives confidenantributions from other schemas as
well as depth information to avoid hitting the barrgéep is a scalar coding the amplitude
of forward movementrhesimRun method computes the motor schema activity,

public void sinRun()
{
ps = ps + rsfo*psfo + rsta*psta + rsdp*psdp +
r smhn psnmhm + r sbk* psbk;
ps = nsl Sigma(ps,-1.0,1.0,-1.0,1.0);
if (ps >th) {
ps = -1.0; // Reset
out = step;
}
el se
out = 0;
}
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Sidestep

The Sidestep motor schema receives confidencatabutions from other schemamngle

is a scalar coding the amplitude of the sidest&pe sSmRun method computes the mo-
tor schema activity,

public void sinRun()

{
psS = pS + rsso*psso + rsta*psta + rsba*psba + rsnmhntpsnhm +
r SX*psx;
ps = nsl Sigma(ps,-1.0,1.0,-1.0,1.0);
out = angle;
if (ps >th) {

ps = 0; // -1.0; // Reset

}

}

Backup

TheBackup motor schema receives confidencatdbutions fromother schemastep is
a scalar coding the amplitude of the backup movement (we omit the BigjgimRun
method computes the motor schema activity,

public void sinRun()
{
ps = ps + rsta*psta + rsba*psba + rsfwpsfw
ps = nsl Sigma(ps,-1.0,1.0,-1.0,1.0);
if (ps >th) {
ps = -1.0; // Reset
out = step;
}
el se
out = 0;
}

L ear ning Dynamics

Schema dynamics previously presented are a simplification of Relaxation Labeling
(Hummel & Zucker, 1983). Additionally, we provide a broad description of some of the
learning mechanisms involved in both constructing a new schema and in tuning a existing
schema. For the overall Schema-Based Learr8Bg)(framework please refer to (Cor-
bacho, 1998).

Schema Learning
We explain how a “new” field of activity overhm is able to reproduce a previously
successful pattern of inetion. Concretely the fidlof activity projected ovemhm that
caused the frog to reactetkedge of the barrier.

Learning of a new schema is triggered when incoherence is detected. In this case the
unexpected interaction when the frog gets toeithge of the barrier is reflected internally
as incoherence imhm. For every field projecting tanhm the predictive response is
calculated by simply storing the previous value corresponding to the result of activating
that field.

mhm_hat(t+1) = mhm(t) (17.17)

The incoherence is measured as the distdretween the current and the expected
result,
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d_mhm(t+1) =Detour_lib.dist(mhm(t+1), mhm_hat(t+1)) (17.18)

when the incoherence is larger than a thoébit indicates “unexpected”. In this case the
“culprit” is the field of activity baf (triggered by theBumpAvoid schema in the first
place), and hence this field is internally stosedthat it can be “played back” in future
interactions with the barrier.

if (d_mhm>d_norm) (17.19)
in= baf

On second presentation of the bariier(reflecting a pattern of activity similar to
baf) projects a field of activity ovenhmwhich in turn gives rise to a large valueaimgle
hence activating th8destep motor schema and detouring around the barrier.

Schema Tuning
In terms of schema tuning, the kernel &rAvoid is tuned every time thBumpAvoid
schema is asserted.

if (tune_tm < 1.5) (17.20)
tune tm= tune_tm+ tune _tm base

Additionally in tuningField
tune_tm layer = tune_tm " ns Sep(-gapsf) (17.21)
gapsf = gapsf - tune_tm layer (17.22)

updates the field obstacle avoidance figdpéf) by subtracting the modulation compo-
nent.

17.4 Simulation and Results'

Different experiments were éd varying the barrier sizd0cm and 20cm) as well as
applying learning to the 20cm barrier experiment. The main simulation files are described
in table 17.2:

File Description SR

detour.nsl contains all the model parameters NSLS script files needed
to run the different

detour_sti.ngl contains all the model stimulus specifications simulations.

detour_fields.ngl displays different fields

detour_env.nsl displays a top down and visual view of the environment

To execute the model do:

nsl source detour
nsl run

The stimuli specifications are done using the NSL input library described in Appen-
dix Ill. The detour_sti.nd file includes parameters for the input layer as follows,

nsl set detour.world.in.dx 1
nsl set detour.world.in.dy 1
nsl set detour.world.in.dz 1
nsl set detour.world.in.xz O
nsl set detour.world.in.yz 0
nsl set detour.world.in.zz O
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The worm specification is given by an input stimulus defined from the NSL input
library as follows,

nsl create BlockStimprey -layer detour.world.in -val 2\
-xc $xw -yc $yw -zc $zw -dx 1 -dy 1 -dz 1 -spec_type center

Note that all variables preceded by ttf# Symbol corresponds to variable values
from Tcl (see the NSLS scripting language description in chapter 7). The values for these
variables are chosen according to the padicexperiment selected through variables
learning andtrial as will be described next.

The frog specification is given similarly by an input stimulus defined from the NSL
input library as follows,

nsl create BlockStimfrog -layer detour.world.in -val 1\
-xc $xf -yc $yf -zc $zf -dx 3 -dy 3 -dz 3 -spec_type center

The barrier (or fence) specification is a éttnore involved given this time by a set
of input stimuli defined from the NSL input library as follows,

for {set xb $xb_init} {$xb <= $xb_end} {incr xb $gap} ({
nsl create Bl ockStimfence -layer detour.world.in -val 1\
-x0 $xb -y0 $yb -z0 $zb -dx 1 -dy 1 -dz 100 -spec_type
cor ner

}

Note that in the aive specification the notation aedpressions correspond to the
NSLS scripting language extended from Tcl as described in chapter 7.

Experiment |
For experiment | (barrier 10 cm wide) set the following variablefour_sti.nd

set learning O
set trial 10

After executing “nsl run” the system displays on one of the windows the different
module fields as shown in figure 17.5.
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Figure 17.5

Different activity fields for the 10cm barrier
experiment due to visual_field processing in the frog
with the exception of the bottom one processed after
the tactile field. The top display (gaps) shows the
repulsive field generated from the barrier (note that it
is negative). The next display down (prey_hor)
represents the attraction field generated from the
prey (note that it is positive). The next display down
(mhm) represents the combined gaps and prey_hor
fields. The next display down (wta) represents the
winner-take-all element from the above mhm field.
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The most important factor in the frog movement direction results fromtthéeld,
resulting itself from the combination of the prey attraction and barrier repulsion fields. In
this experiment the direction of movement is towards the side of the barrier, heading
towards the right since the frog was positioned just a bit to the right from the axis joining
the center of the prey and barrier. The resglpath motion is shown in figure 17.6.

e — Figure 17.6
Rana Computatrix interacting with the 10 cm wide

barrier. Note how the frog heads itself towards the side
of the barrier.
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Experiment 11
For experiment Il (barrier 20 cm wide) set the following variabldetour _sti.ngl

set learning O
set trial 20

After executing “nsl run” the system displays on one of the windows the different
module fields as shown in figure 17.7.
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Figure 17.7

Different activity fields for the 20cm barrier experiment
before bumping due to visual_field processing in the
frog with the exception of the bottom one processed
after the factile field. The top display (gaps) shows the
repulsive field generated from the barrier (note that it is
negative). The next display down (prey_hor) represents
the attraction field generated from the prey (note that it
is positive). The next display down (mhm) represents
the combined gaps and prey_hor fields. The next
display down (wta) represents the winner-take-all
element from the above mhm field. This winning
element results in the heading or frog’s orientation

m when moving forwards. The last display (baf) is
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currently empty and represents activity due to bumping
against the barrier.
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Again, the most important factor in the frog movement direction results fromtahe
field, resulting itself from the combinatioof the prey attraction and barrier repulsion
fields. In this experiment the direction of movement before bumping into the barrier is
towards the middle of the barrier. Once the frog hits the barrier a bumping (baf) field is
generated. The purpose of this field is to redirect the movement towards a different
heading. Before that occurs the frog will backup. The resulting field after bumping is
shown in figure 17.8.
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Figure 17.8

Different activity fields for the 20cm barrier
experiment after bumping due to visual_field
processing in the frog with the exception of the
bottom one processed after the factile field. The top
display (gaps) shows the repulsive field generated
from the barrier (note that it is negative). The next
display down (prey_hor) represents the attraction
field generated from the prey (note that it is
positive). The next display down (mhm) represents
the combined gaps and prey_hor fields. The next
display down (wta) represents the winner-take-all
element from the above mhm field. This winning
element results in the heading or frog’s orientation
when moving forwards. The last display (baf) is
represents activity due to bumping against the
barrier.

The resulting path motion after hitting the barrier several times is shown in figure

17.9.
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Figure 17.9

Rana Computatrix interacting with the 20 cm barrier
before learning. We have added numbers
corresponding to the frog’s position in time. In this
experiment the frog hits the barrier three times before
perceiving the side of the barrier.
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Experiment |11
For experiment Il (barrier 2@m wide with learning) $ethe following variable in
detour_sti.ngd

set learning 1
set trial 20

We change the threshold dfnorm to simulate that after one interaction with the
20cm barrier the frog would have learned and from then on it would detour when pre-
sented with the 20 cm barrier. The resulting behavior is shown in figure 17.10.

 — Figure 17.10

Different activity fields for the 20cm barrier
experiment after learning due to visual_field
processing in the frog with the exception of the
bottom one processed after the factile field. The top
display (gaps) shows the repulsive field generated
from the barrier (note that it is negative). The next
display down (prey_hor) represents the attraction
field generated from the prey (note that it is
positive). The next display down (mhm) represents
the combined gaps and prey_hor fields. The next
display down (wta) represents the winner-take-all
element from the above mhm field. This winning
element results in the heading or frog’s orientation
when moving forwards. The last display (baf) is
currently empty and represents activity due to
bumping against the barrier.
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Note that although no bumping occurs, thiem field involves a similar integration
where heading is explicitly generated, in this case by learning. The resulting behavior is
shown in figure 17.11.
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F— Figure 17.11

Rana Computatrix interacting with
the 20 cm wide barrier after
learning.

17.5 Summary

The model explains basic facts about detour behavior. If the retinotopic representation of
the edge of the barrier iBorRec falls within the prey-attctant-field spread, then the
summation of activity from the py-attractant-field and from tH8OR-repellent map on

MHM at the retinotopic position just beyond the barrier's edge is stronger then the sum-
mation at the “center” of the barrier where tirey is located. Hence, the winner-take-all
dynamics will select the cluster of activity corresponding to the retinotopic position of the
edge of the barrier, thus predicting that frogs would detour around narrow barriers. On
the other hand, for wide barriers the preyeatiant-field extent falls within a much wider
barrier field. Hence, at thHM retinotopic position corresponding to the barrier's edge
there will be no input activity from the prey map. On the other hand, there will be a great
projection of activity oiMHM at the retinotopic position of the prey; and this in turn will
trigger approach to a point within the barrier map, so long as the peak of prey attraction
exceeds the trough of barrierhibition. Thus, tle model predicts that the naive frog
would approach wide barriers rather than detour around them.
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1. Preparation of this paper was supported in part by award number IBN-9411503 for
Collaborative Research (M.A. Arbib and A.eéétasuriya, co-Princgb Investigators)
from the National Science Foundation.

2. A. Weitzenfeld developed the NSL3.0 version and extended the original NSL2.1
model implementation written by F. Corbacho as well as contributed Section 17.3
and part of 17.4 to this chapter.

3. The Detour model was implemented and tested under NSLC.
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