

17 Learning to Detour1
F. J. Corbacho and A. Weitzenfeld

2

17.1 Introduction
Anurans (frogs and toads) show quite flexible behavior when confronted with stationary
objects on their way to prey or when escaping from a threat. Rana computatrix (Arbib,
1987), an evolving computer model of anuran visuomotor coordination, models complex
behaviors such as detouring around a stationary barrier to get to prey on the basis of an
understanding of anuran prey and barrier recognition, depth perception, and appropriate
motor pattern generation mechanisms based on sensory perception. This chapter presents
a model of detour in Rana computatrix with an extension to learning of new schemas
“How are schemas combined to form new schema assemblages acquired for the system to
become more efficient?” We describe the construction mechanisms and interactions with
the environment necessary to achieve higher levels of detour performance. This chapter
describes a model that includes all these phenomena implemented in NSL. More details
on some of the model components can be found in (Corbacho and Arbib, 1995) whereas
Corbacho et al. (1996) present more behavioral data. This is a specific model in Schema-
based Learning (SBL) but it serves to exemplify some of the general points and mecha-
nisms included in the general framework of SBL. For the general framework we refer the
reader to (Corbacho, 1998).

In this chapter we present a Schema-based model of learning to detour including dif-
ferent schemas implemented in some cases as functional units and in other cases as neural
networks. The motivation for the study of Learning to Detour in frogs as our case study
in Schema-based learning (SBL) is three-fold:

1. SBL is constrained by data on a neuro-ethologycally sound system -both the task, the
environment and the agent.

2. The study of Rana Computatrix allows for horizontal integration (across many inte-
grated functionalities) and not just vertical integration (action-perception within one
central functionality, e.g., saccadic eye movements).

3. Learning to Detour has proved to be a very adaptive process relaying on important
processes of learning (Corbacho et al., 1996).

Problem Background
Ingle (1983) and Collett (1983), to cite some examples, have observed that a frog/toad’s
approach to a prey or avoidance from a threat are also determined by the stationary ob-
jects in the animal’s surround. A frog or toad, viewing a vertical paling fence barrier
through which it can see a worm, may either approach directly to snap at the worm, or
detour around the barrier. However, if no worm is visible, the animal does not move.
Thus, it is the worm that triggers the animal’s response but, when the barrier is present,
the animal’s trajectory to the worm changes in a way that reflects the relative spatial
configuration of the worm and the barrier. Corbacho and Arbib (1995) modeled the dif-
ferent behavioral responses to different barrier configurations, as well as the learning
involved in the behavioral transitions. The present section is based on behavioral studies
of frogs, Rana pipiens (Corbacho et al., 1996). Here we sample a few of our observations
of the main capabilities of frogs for detour behavior that set challenges for our learning
model.

3 2 0 C H A P T E R 1 7

Experiment I: Barrier 10 cm Wide
Frogs that started from a long enough distance (15–25 cm) in front of a 10cm wide
barrier (and with the worm 10 cm behind the barrier) showed (in 95% of the trials)
reliable detour behaviors from the first interaction with the 10 cm barrier. They produced
an immediate approach movement towards one of the edges of the barrier (see 17.1A).
This experiment shows that an adult frog has the capability without training to perform
detours when the barrier is narrow enough (10 cm long) and the frog is at a far enough
distance (15-20 cm) from the barrier.

Experiment II: Barrier 20 cm wide
From now on we will refer to a frog which has not been exposed to the barrier paradigm
as naive. If the chopsticks are placed the same distance apart, so that the gaps have the
same width, and the barrier is 20 cm wide, then the naive frog tends to go for the gap in
the direction of the prey (this was the case for 88% of the trials). The frog starts out ap-
proaching the fence trying to make its way through the gaps. During the first trials with
the 20 cm barrier the frog goes straight towards the prey thus bumping into the barrier.
When the frog is not able to go through a gap towards the prey it backs-up about 2 cm
and then reorients towards one of the neighboring gaps (see figure 17.1B).

Observation: After 2 (43%) or 3 (57%) trials, the frog is already detouring around the
barrier without bumping into the barrier (see figure 17.1C). The behavior involves a
synergy of both forward and lateral body (sidestep) movements in a very smooth and
continuous single movement.

�
�

�

�
�

�

�
�

	

		

�

�

Figure 17.1�
���Approach to prey with
single 10 cm barrier
interposed. ���Approach to
prey with single 20 cm barrier
interposed: first trial with frog
in front of 20 cm barrier
(numbers indicate the
succession of the
movements). ���Approach to
prey with single 20 cm barrier
interposed: after 3 trials with
frog in front of 20 cm barrier.
Arrowheads indicate the
position and orientation of
the frog following a single
continuous movement after
which the frog pauses.

17.2 Model Description
We start by defining the environment and the agent (frog in this case). The environment
provides the agent with an interaction space. Ultimately the behavior of any agent is very
dependent on its environment so that the behavior can only be understood in relation to
the synergy agent-environment. In order to define the structure of the agent we start by
defining the spaces of interaction/communication with the environment and then follow
with the functional units that constitute the agent.

Definition. An Environment is a space that includes a collection of entities and their
relations (interactions). A particular instance configuration at time t will be denoted as

L E A R N I N G T O D E T O U R 3 2 1

Environment(t). Environment is a 150x150 grid where different entities e.g., frog(xf,yf),
barrier(xb,yb,wh,g). The simulation system contains simplified Environment functions
designed to allow for an adequate interaction between the simulated agent and its envi-
ronment, for instance the simulation system performs simple “shifts” of the agent’s visual
field as it moves in the environment and its coordinates change. The environmental func-
tions will be described in more detail in the Model Architecture section.

Basically, the visual field of the agent corresponds to a sector of the Environment,
and the coordinates of this sector are updated as the agent moves around. This 2D sector
corresponding to the agent’s visual field is projected upon the retina of the agent, which
is the front-end visual perception system. The agent may also perform several actions that
may cause environmental and agent parameters to change.

Component Schemas: Architecture
The detour model incorporates schemas (functional units) and neural modules (structural
units) described in table 17.1 and shown in figure 17.2.

Function Schema Level Modules Neural Level Modules

Perceptual Visual, Depth, Tactile, PreyRec, SoRec Retina, T5_2layer, TH10layer

Sensorimotor PreyApproach, SoAvoid Motor Heading Map (MHM)

Motor Forward, Orient, Sidestep, Backup

R4

Visual

R1-R2

R3

Retina

T5_2 layer

TH10 layer
Motor

Heading
Map

Static Object
Recognizer

Prey
Recognizer

TH10

T5_2

Static Object
Avoidance

Prey Approach

Forward

Orient

Sidestep

BackwardTactile Schema Level

Neural Level

Figure 17.2
Schema Architecture for Detour
Model consisting of two levels: a
schema level and a neural
networks level. The schema level
consists of Perceptual Schemas:
Visual and Tactile, Prey
Recognition, Static Object
Recognition (SOR);
Sensorimotor Schemas: Prey
Approach and Static Object
Avoidance; and Motor Schemas
Orient, Forward, Sidestep and
Backup. The neural level
consists of four modules: Retina,
T5_2layer, TH10layer and the
Motor Heading Map (MHM).

Perceptual Schemas
Perceptual schemas involve both sensors and recognizers based on these sensors.

Visual
The Visual schema simulates a visual sensor discriminating among different objects in
the visual field, mainly prey and barrier in this model.

Depth
The Depth schema generates a depth map for the objects of interest, primarily barrier in
order to avoid hitting it and generating appropriate responses according to how close the
frog is to it.

Table 17.1
Frog schemas according to
their functional (schema
level) and structural
organization (neural level).

3 2 2 C H A P T E R 1 7

Tactile
When the frog hits an object, in the current case the barrier, the Tactile schema gets trig-
gered. The simulation environment checks when the frog comes level with the barrier
(equal y-coordinates), and then checks whether there is a passable opening (we have
chosen 3 cm wide or more for our simulations—this would change as the frog grows) at
the frog’s current x-coordinate. If the gap is not passable then the Tactile schema gets
triggered:

 =

=
otherwise0

 wise3cm than less is closest to theand if1 xyy fbf
Tactile

(17.1)

where (fx,fy) are the (x,y) coordinates of the “snout” of the simulated frog in the 2D
world, and by is the “depth” coordinate of the barrier.

Prey Recognizer
Cervantes-Perez et al. (1985) presented a detailed neural network implementation for
prey recognition. Here we present a schema (PreyRec) that approximates this neural
network mapping. The presence of prey within the visual field of the animal produces a
2D pattern of activity in the prey recognition system, while absence of prey leaves the
system at rest. This is here implemented by simplified feature detectors but it is open to
more detailed implementations.

Ewert (1971) found in toad’s pretectum near the ventral part of the pct (postero-
central thalamic nucleus), units that give continued discharge in the presence of a large
dark stationary object. This occurred even when the stationary object was revealed by
turning on the room lights without prior motion: Class th10 neurons—with an ERF of
about 30–90°—exhibit prolonged discharge to large contrast stimuli that are stationary in
their ERF.

Static Object Recognizer
A model of Stationary Object Recognition in anurans was proposed by Lee (1994) based
on these findings. In this paper we provide a schema (SorRec) that approximates this
model providing the output through the th10 cells map.

Sensorimotor Schemas
Sensorimotor schemas integrate between sensory perception and motor action.

Prey Approach
Epstein (1977) introduced, and Arbib & House (1987) refined, the notion of prey attrac-
tant field. A prey sets up a symmetric attractant field whose strength decays gradually
with distance from the prey. Arbib & House (1987) described the mask for prey objects
as projecting very broadly in the lateral direction and somewhat less broadly in the for-
ward direction This “prey-attractant-field” represents the location of the stimulus accu-
rately as the center of mass of the representation. It also provides the system with
neighbor positions available as targets were the accurate position impossible to reach,
thus providing the system with a coarse representation of prey location.

PreyApproach projects this excitatory field onto the MHM (motor heading map)
explained below. We hypothesize the projection of activity giving rise to coarse coding of
prey location.

prey(i,j,t)@kp(i,j) (17.2)

where i and j are indices for 2D arrays of neurons, t is time, kp is a kernel, and @ denotes
spatial convolution. In general, each kernel in the present model will be a truncated Gaus-
sian of the general form

L E A R N I N G T O D E T O U R 3 2 3

 ≤++−=

otherwise 0

 if]2/)(exp[
),,(

222222 RyxsyxW
tyxk

(17.3)

where R is the receptive field size.

Static Object Avoid
Analogously, the model also includes a repellent vector field associated with each fence
post. Its effect is more localized to its point of origin than is that of the prey field.

th10(i,j,t)@ks(i,j,t) (17.4)

We hypothesize the inhibitory pattern of connectivity to be also Gaussian shaped.

Bump Avoid
The BumpAvoid schema produces a reorientation that triggers the projection of an activ-
ity pattern (with quite large eccentricity) to the MHM. This field gives rise to excitation
on the neighbor regions thus encoding the reorientation under bumping. It takes the form
of

reorient(i,t) (17.5)

Motor Heading Map
Cobas and Arbib (1992) propose that a motor heading map (MHM) determines the direc-
tion to jump: i.e., prey-catching and predator avoidance systems share a common map for
the heading of the responding movements (coded in body coordinates), as distinct from a
common tectal map for the direction of the stimulus. Note that the direction of prey and
the direction of prey catching are the same, but the directions of a predator and the escape
are different. Thus, in the latter case, the sensory map and the motor map must be distin-
guished. Projections to the MHM must differ depending on whether a visual stimulus is
identified as prey, predator or obstacle.

In our model, the outputs of the previously defined schemas (th10 and prey(T5_2)
respectively) are projected to MHM through kernels.

In the current study the “neural field” generated in the MHM will be 1D (vs. 2D prey
and th10 maps) - we restrict here to the eccentricity component since the elevation com-
ponent is not important for the problem at hand. That is, the height of each fence-post (for
fences high enough that the frog could not jump over them) does not affect the detour
behavior. The eccentricity component which actually represents the target heading angle
in the MHM will be the key “feature” in determining the sidestep to detour around the
barrier.

In our model, then, the total input Iin to MHM becomes

),(*),,(),,(*),,(10),(jiktjipreytjiktjithtiI P
j

s
j

in ∑∑ +=

(17.6)

Thus the total input to MHM when including reorientation due to bumping becomes

),(),(*),,(),,(*),,(10),(tireorientjiktjipreytjiktjithtiI P
j

s
j

in ++= ∑∑

(17.7)

Winner-take-all dynamics over MHM assure the selection of the strongest target

angle, upon which a transformation from retinotopic to motor coordinates takes place.
This is the input (besides different gating signals from the sensory apparatus) to the dif-
ferent motor schemas. The motor schemas are then selected based upon competition and
cooperation dynamics. Corbacho and Arbib (1995) present a winner-take-all model
(Amari & Arbib, 1977; Didday, 1976) which uses a competition mechanism to obtain a
single winner in the network.

3 2 4 C H A P T E R 1 7

Heading Transform
The Heading Map in Cobas and Arbib (1992) is differentially connected with the Orient
schema depending on the region represented. The more lateral the stimulus is, the more
strongly the Orient schema will be activated. The central portion of the heading map has
a very light projection onto the oriented schema, and thus a prey falling into that region
will only elicit a weak activation and consequently a very small turning movement or
perhaps no turn at all.

We have implemented the transformation from spatially coded to population coded
in a similar manner. The output of the sensory motor transformation codes for the ampli-
tude of the target-heading angle. To perform the transformation we use a gradient of
weights with a “V” shape. The highest value corresponding to the highest eccentricity.

]),([)^()(∑ Θ=
i

tiIigradienttangle

(17.8)

where “^” is a pointwise vector multiplication, and implements a thresholding function to
avoid producing an orienting response until the motor heading map “settles down” on a
target position. Before the winner-take-all dynamics settle down on a “winner” target
heading angle several clusters of activity may coexist in MHM corresponding to the
representation of several barrier gaps in MHM. We use (Eq. 17.8) so that during the win-
ner-take-all dynamics, the cluster of activity with higher amplitude will reach this thresh-
old first as it is growing faster than any of the other clusters of activity. This enables the
model to avoid computing a heading angle that could be a linear combination of several
clusters of activity in MHM.

Motor Schemas
In the current model, motor schemas are implemented as functional units/black boxes
schematizing the neural interactions underlying behavior. The intrinsic motor patterns or
muscle activations are not simulated. When active they simply change the coordinates of
the agent (and/or environmental parameters) appropriately.

We postulate that each component of the behavior (sidestep, orient, approach, snap,
etc.) is governed by a specific motor schema. We then see detour behavior as an example
of the coordination of motor schemas. Ingle (1980, 1983) has offered some clues as to the
possible neural correlates of the various schemas. Apparently, thalamic and tectal visual
mechanism can operate somewhat independently (Ingle, 1973). Monocular frogs without
a contralateral optic tectum can quite accurately localize barriers, and while visual input
to the pretectal region of the caudal thalamus mediates barrier avoidance behavior, caudal
thalamic lesions produce an inability to sidestep stationary barriers set in the frog’s path
during pursuit of prey.

Among other motor schemas we provide the system with forward movement and lat-
eral (sidestep) movement. The forward schema when active produces a movement in the
direction of the midsagittal axis of the body with frontal direction. The lateral sidestep
movement is a movement orthogonal to the sagittal midline. Backup movement is similar
to forward but in the opposite direction.

Cobas and Arbib (1992) proposed a general mechanism of motor pattern selection
through the interaction of motor schemas. MHM contains target location but motor
schema selection is the result of competition of many maps. Each of the motor schemas
has a threshold so that its action on the controlled musculature is only enabled when its
internal level of activation reaches or surpasses that threshold.

Schema Dynamics
Schemas consist of schema behavioral mappings and schema activity variables. The full
formalization is beyond the scope of this chapter; here simply mention that schemas

L E A R N I N G T O D E T O U R 3 2 5

correspond formally to port automata with activity variables indicating the degree of
confidence. The schema activity dynamics is described by the leaky integrator. The equa-
tion describing the dynamics of the schema activity variables is

() () () ()∑ ⋅+−=
j

jiji
i

i tRtSts
dt

tds
,τ (17.9)

where S is the result of a saturation by a sigmoid transfer function that guarantees that the
activity variables remain within the interval [-1, 1],

())()(tstS ii Θ= (17.10)

R is the matrix of support. It indicates how the activation of a schema supports the
activation of another schema. The leaky integrators time constants may be different for
different schema activation variables since some schemas may have a faster dynamics
e.g. Tactile must reset quickly and with it BumpAvoid.

Schema Assertion
Schema assertion takes place when the schema activity variable surpasses certain thresh-
old hence indicating enough confidence on the application of that particular schema to
the particular context. Once asserted the schema mapping output is produced, this pattern
may in turn become the input for other schema mapping output. For many schemas once
they are asserted they must be reset to avoid successive unrealistic activations. For
instance once a motor schema has been asserted its activity variable is reset to 0.

Schema Interactions
There are some “reflex” dynamics corresponding to fast pathways e.g. Tactile activates
Backup in one step (instantiation and activation). Also Tactile must reset quickly and
with it BumpAvoid. Tactile momentarily inhibits Forward since otherwise Forward
would be too active and lower down Backup activity variable to the point where Backup
could not get activated. In general many schemas will be simultaneously active interact-
ing with each other, for instance Sidestep and Forward schemas are simultaneously active
when “detouring” after learning.

17.3 Model Implementation
The Detour model is composed of the World module—a 3D input stimulus library, Prey
and Frog modules, as shown in figure 17.3. The static objects, in this case the Barrier,
are interactively specified from the scripting language as opposed to the other two.

Detour

World

Frog

xfwangle

xwxw

xwxfwanglexb_init

worldXZ

worldXZ

xb_init

xb_end

xb_end yf

ywyw

ywyfyb

yb zf zwzw

zwzfzb

zb

Prey

Figure 17.3
Schema Architecture showing
the top-level world topology.

3 2 6 C H A P T E R 1 7

Frog
xf xwworldXZ xb_init xb_endyf ywyb

Depth

depthX depthX

depthY depthY
psps

Visual

visualField

worldXZ

Tactile

xf xf xw
xb_init xb_end

yf yf yw

yb

depthX

depthY

depthX

depthY

SorRecPreyRec

t5_2f

t5_2f

preyHorf

mhm

preyHorf

gapsf

gapsf

gaps

gapsf

baf

baf

th10f

th10f

ps

psfo

ps

ps

ps

ps

ps

psso

psoa

pspa

psta

PreyApproach
BumpAvoid

SorAvoid

MHM

visualFieldvisualField

depthY angle

angle

out outout

wtaMhm

psfo

psbk ps psfwps

pspa

psdp

pstapsta

psmhm psmhm

psbapsba psta

ps

psso

psx

psoa

Forward
Backup

Sidestep

Xform

wtaMhm
mhm

WTA

angleforward_step backward_step

Figure 17.4
Schema Architecture showing
the frog schemas topology.

World
We have provided for simple interactions with the World module. We simulate a simpli-
fied 3D environment by defining two different 2D projections or views: worldXY corre-
sponding to the top down view only available to the user, and worldXZ corresponding to
the view of an agent immersed in the environment. The worldXZ view is used as visual
input to the frog.

The model takes advantage of the input layer components (see Appendix III for
details) in generating external visual stimuli. A NslInputFloat3 3d input layer of
sizex1xsizex2 in the x-direction and sizez1xsizez2 in the z-direction is instantiated by the
World module as follows,

L E A R N I N G T O D E T O U R 3 2 7

private NslInputFloat3 in(sizex1,sizex2,sizez1,sizez2);

Note that a the NslInputFloat3 input layer actually involves two NslInputFloat2
layers: an xy-matrix and a xz-matrix corresponding two the two different views in the 3d
space. Input processing takes places as follows,

public void simRun(){

 ...

 in.run();

 worldXZ = in.get_xzview();

}

The in object is processed by applying a the run method to it. This generates a new
xy-matrix together with a new xz-matrix assigned to worldXZ for further processing in the
model.

Prey
The prey (worm in this case) is a static entity (although movement can be added to it,
such as twiggling). In the current version the prey is described by its location and size.

Barrier
The obstacle (barrier in this case) is also a static entity composed of multiple posts sepa-
rated by gaps, wide enough to let the frog see the prey behind it. The barrier gaps don’t
let the frog pass through it and are tall enough so the Frog won’t jump over it. The size
and gaps between barrier posts can be modified interactively as will be seen later on.

Frog
The agent (frog in this model) is the heart to the detour model. The frog model includes a
number of perceptual, sensorimotor and motor schemas instantiated within the frog, as
shown in figure 17.4, and described each in the following sections.

Perceptual Schemas
Perception for the frog in the model is based on Visual and Tactile sensors, where also
Depth is computed. In particular, the frog perceives the prey, PreyRec (Prey
Recognizer), and the barrier, SoRec (Static Object Recognizer).

Visual
The visual input to the frog correspond to 2D image projections of the virtual 3D world
reflected on the eyes (or camera) of the agent. The model computes a visualField corre-
sponding to the section of worldXZ that the frog can see at each time step. As the frog
moves - frog coordinates xf, yf change - the visualField needs to be recomputed.

The simRun methods computes the new visualField from the complete worldXZ
view depending on the size of its receptor field recsize

public void simRun()

{

 int recsize = visualField.getRows();

 int isize = worldXZ.getRows();

 int jsize = worldXZ.getCols();

 visualField = worldXZ.getSector(isize-recsize,isize-1,

 jsize/2-recsize/2,jsize/2+recsize/2-1);

}

The getSector method obtains the portion of the worldXZ view perceived by visual-
Field.

3 2 8 C H A P T E R 1 7

Depth
The Depth module computes the distance in both x (depthX) and y (depthY) to the barrier
or prey depending on the Frog’s current position in the world. This information is passed
to the static object recognition and bump avoidance modules as well as the Forward
module in avoiding hitting the barrier. The module output ps is a confidence level
describing when depthY is greater than safeDistance, where safeDistance corresponds to
the minimum distance the Frog should be to avoid hitting the barrier.

The simRun method computes the dynamic location of the frog, and then calculates
through simple subtractions the depth of the barrier and finally the ps confidence level
that the frog is not too close to the barrier as output to other modules.

public void simRun()

{

...

if (depthY > safeDistance || depthX > safeDistance)

 ps = 2.0; // Go up fast

 else

 ps = 0.0;

}

Tactile
The Tactile module simulates the frog hitting the barrier from its current position to the
barrier computed by Depth.

The simRun method computes the output confidence level ps depending on whether
the frog is close enough, both x and y, to the barrier.

public void simRun()

{

 if (depthY > 0 && depthY <= safeDistance &&

 depthX <= safeDistance)

 ps = 2; // Go up fast

 else

 ps = 0.0;

 ps = nslSigma(ps, -1.0, 1.0, -1.0, 1.0);

}

Prey Recognizer
The Prey Recognizer (PreyRec) module recognizes and localizes prey stimuli within the
visual field of the frog. The Prey is defined as a set of features. In this particular
implementation we have simplified this perceptual schema a great deal (see Corbacho
and Arbib 1995 for a more detailed implementation). The module receives visualField
input from the frog visual module and generates both an output confidence level and
simulates the behavior of the t5_2 neural cells.

L E A R N I N G T O D E T O U R 3 2 9

The simRun method computes the prey recognizer output in terms of filtering the
visualField for a prey stimulus.

public void simRun()

{

 t5_2 = DetourLib.filter(visualField,2);

 if (nslSum(t5_2) >= 1)

 ps=0.9;

 else

 ps=0;

 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);

 if (ps > th)

 t5_2f = nslRamp(t5_2);

 else

 t5_2f = 0;

}

In particular

t5_2 = DetourLib.filter(visualField, 2); (17.11)

defines a prey in terms of a feature “2” corresponding to preys. The function filters
out all elements in the matrix that do not have a corresponding value, in this case “2”.
This filtering function can be made more realistic including color, spatial frequency,
complex shape filters, etc.

The output t5_2 is still a 2D map representing the retinotopic position of the prey
(vs. allocentric prey coordinates).

Since this is a “seed” perceptual schema it must also provide “seed support” for its
schema activation variable ps.

 >=

=
otherwise 0

1)2_5nslSum(if 9.0 t
ps (17.12)

Then, once the schema is asserted, ps > th,

t5_2f = nslRamp(t5_2); (17.13)

corresponding to the activation of the output port.

Static Object Recognizer
The Static Object Recognizer (SoRec) module recognizes and localizes static objects
within the visual field of the frog. The Static Object is defined as a set of features. The
module receives visualField input from the frog visual module and generates both an
output confidence level and simulates the behavior of the th10 neural cells.

The simRun method computes the prey recognizer output in terms of filtering the
visualField for a barrier.

3 3 0 C H A P T E R 1 7

public void simRun()

{

 th10 = DetourLib.filter(visualField, 1);

 if (nslSum(th10) >= 1)

 ps=0.9;

 else

 ps=0;

 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);

 if (ps > th)

 th10f = nslRamp(th10);

 else

 th10f = 0;

}

Similarly to the Prey Recognizer, the stationary object recognition filter stationary
objects,

th10 = DetourLib.filter(visualField, 1); (17.14)

corresponding to feature “1” defining stationary objects.
Then, once the schema is asserted, ps > th,

th10f = nslRamp(th10); (17.15)

corresponding to the activation of the output port.

Sensorimotor Schemas
The frog model incorporates a number of sensorimotor schemas: PreyApproach,
SoAvoid, BumpAvoid, Motor Heading Map (MHM) and Heading Transform (Xform).

Prey Approach
The PreyApproach module integrates the horizontal projection of t5_2 cells generating a
1D representation (parcellation), since it is more efficient to make the 1D projection
before convolving with the gaussian kernel. preyHor corresponds to the eccentricity
component of the prey attractant field (horizontal component).

The initSys method reinitializes variables to 0, sets the confidence level input weight
rs to 1, and initializes the excitatory gaussian kernel t5_2_erf,

public void initSys()

{

 preyHor = 0;

 preyHorf = 0;

 rsfo = 1.0; // Prey & Prey Approach.

 ps = 0;

 DetourLib.gauss2D(t5_2_erf,t5_2_erf_sig);

 t5_2_rf = t5_2_erf_wgt * t5_2_erf;

}

L E A R N I N G T O D E T O U R 3 3 1

The simRun method computes the module activity,

public void simRun()
{
 preyF = t5_2_rf * t5_2f;
 preyHor = nslReduceRow(preyF); // Parcellation:
 horizontal comp
 ps = rsfo*psfo;
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);
 if (ps > th) {
 float mx = nslMax(prey_hor);
 if (mx != 0.0)
 prey_hor_f = prey_hor/mx; // Normalize.
 }
 else
 prey_hor_f = 0;
}

Once the schema is asserted, PreyHor contains the field (normalized by the maxi-
mum value) to be projected to the other modules (e.g. MHM).

Static Object Avoid
The SorAvoid schema is implemented in a similar manner. IT integrates th10Hor as the
1D horizontal component corresponding to a parcellated representation (C&A95). Gaps
corresponds to the inhibitory obstacle repellent field. Once the schema is asserted, gapsf,
which is normalized by the maximum value, is projected to the other schemas (e.g.
MHM).

The initSys method reinitializes variables to 0, sets the confidence level input weight
rs to 1, and initializes the inhibitory gaussian kernel tm_irf and the final resulting kernel
tm_rf

public void initSys()
{
 rsso = 1.0; // Obstacle & Obstacle Avoid
 ps = 0;
 DetourLib.gauss1D(tm_irf,tm_irf_sig);
 tm_rf = - tm_irf_wgt * tm_irf;
}

The simRun method computes the schema activity,

public void simRun()
{
 th10Hor = nslReduceRow(th10f); // Parcellation (from 2D to 1D)
 gaps = tm_rf * th10Hor; // Convolve with kernel
 ps = rsso*psso;
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);
 if (ps > th) {
 float mx = nslMax(gaps*-1);
 if (mx != 0.0)
 gapsf = gaps/mx;
 }
 else
 gapsf = 0;
}

3 3 2 C H A P T E R 1 7

Bump Avoid
The BumpAvoid schema contains two components: field projection baf for reorientation
(avoid keeping bumping on the same point) and, tuning of the SorAvoid module.

The simRun method computes the activity as follows

public void simRun()
{
 if (depthY <= safeDistance && depthX <= safeDistance)
 //Bumping ps = 0;
 else
 ps = -1.0; // Go down fast: -2.0
 if (tune_tm < 1.5) // saturate tune_tm.
 tune_tm = tune_tm + tune_tm_base;
 tune_tm_layer = tune_tm;
 tune_tm_layer = tune_tm_layer ^ nslStep(-gaps);
 gaps = gaps - tune_tm_layer;
 gapsf = gaps;
 ps = ps + rsta*psta;
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);
 if (ps > th){
 field_center = field_center + 2;
 baf[field_center.getValue()] = field_A;
 }
 else
 baf = 0;
}

The function modulates the kernel. Every time it bumps it increases tune_tm until it
reaches a saturation point. It tunes the bump avoid field by increasing eccentricity, modu-
lating only already active neurons. Every bump it increases tune_tm until it reaches a
saturation point.

Motor Heading Map
The Motor Heading Map (MHM) schema then integrates the different fields preyHorf,
gapsf and, baf. Another input to MHM, in, contains further modulating fields learned by
the system. In particular, it will contain fields generated by newly constructed schemas
(e.g. detour schema, at the moment the only one in the model).

The simRun method computes the schema activity,

public void simRun()
{
 if (d_mhm > d_norm && gapsf ! = 0)
 {
 baf[field_center.getValue()] = field_A;
 in = baf; // New Field “inserted”
 }
 else
 in = 0; // reset input (cf. antidromic
 mhm_hat = mhm;

 // Predictive MHM.
 mhm = gapsf + preyHorF + baf + in;
 // Fields over MHM.
 d_mhm = 0.03 * DetourLib.dist(mhm, mhm_hat);
 ps = ps + rspa*pspa + rsoa*psoa;
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);
}

L E A R N I N G T O D E T O U R 3 3 3

The above code computes the dynamics of Motor Heading Map (MHM), integrating
several fields, while new fields can also be added while learning. The “if” section com-
putes learning dynamics. It detects an incoherence and hence a trigger for a new schema.

Heading Transform
The winner take all selects a single target where maxim returns the vector normalized
(subtraction) by its maximum, where only the maximum is above threshold (by 0.01).

public void simRun()

{

 wta_mhm = DetourLib.maxim(mhm);

}

Heading Transform
The Xform schema transforms from retinotopic (vector) to population code (scalar) the
representation of the target.

The simRun method computes the schema activity,

public void simRun()
{
 int i = nslAvgMaxValue(wta_mhm);
 angle = 0;
 if (i != 0)
 angle = i - wta_mhm.getRows()/2;
 ps = ps + rspa*pspa + rsoa*psoa;
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);
}

The method computes the transformation to population coding corresponding to

angle = nslSum(gradient ^ wtaMhm); (17.16)

coding the heading angle as a scalar (cf. population coding).

Motor Schemas
We have included three motor schemas as explained in the Model Description section,
forward, sidestep and backup.

Forward
The Forward motor schema receives confidence contributions from other schemas as
well as depth information to avoid hitting the barrier. step is a scalar coding the amplitude
of forward movement. The simRun method computes the motor schema activity,

public void simRun()
{
 ps = ps + rsfo*psfo + rsta*psta + rsdp*psdp +
 rsmhm*psmhm + rsbk*psbk;
 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);
 if (ps > th) {
 ps = -1.0; // Reset
 out = step;
 }
 else
 out = 0;
}

3 3 4 C H A P T E R 1 7

Sidestep
The Sidestep motor schema receives confidence contributions from other schemas. angle
is a scalar coding the amplitude of the sidesteps. The simRun method computes the mo-
tor schema activity,

public void simRun()

{

 ps = ps + rsso*psso + rsta*psta + rsba*psba + rsmhm*psmhm +

 rsx*psx;

 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);

 out = angle;

 if (ps > th) {

 ps = 0; // -1.0; // Reset

 }

}

Backup
The Backup motor schema receives confidence contributions from other schemas. step is
a scalar coding the amplitude of the backup movement (we omit the sign). The simRun
method computes the motor schema activity,

public void simRun()

{

 ps = ps + rsta*psta + rsba*psba + rsfw*psfw;

 ps = nslSigma(ps,-1.0,1.0,-1.0,1.0);

 if (ps > th) {

 ps = -1.0; // Reset

 out = step;

 }

 else

 out = 0;

}

Learning Dynamics
Schema dynamics previously presented are a simplification of Relaxation Labeling
(Hummel & Zucker, 1983). Additionally, we provide a broad description of some of the
learning mechanisms involved in both constructing a new schema and in tuning a existing
schema. For the overall Schema-Based Learning (SBL) framework please refer to (Cor-
bacho, 1998).

Schema Learning
We explain how a “new” field of activity over mhm is able to reproduce a previously
successful pattern of interaction. Concretely the field of activity projected over mhm that
caused the frog to reach the edge of the barrier.

Learning of a new schema is triggered when incoherence is detected. In this case the
unexpected interaction when the frog gets to the edge of the barrier is reflected internally
as incoherence in mhm. For every field projecting to mhm the predictive response is
calculated by simply storing the previous value corresponding to the result of activating
that field.

mhm_hat(t+1) = mhm(t) (17.17)

The incoherence is measured as the distance between the current and the expected
result,

L E A R N I N G T O D E T O U R 3 3 5

d_mhm(t+1) = Detour_lib.dist(mhm(t+1), mhm_hat(t+1)) (17.18)

when the incoherence is larger than a threshold it indicates “unexpected”. In this case the
“culprit” is the field of activity baf (triggered by the BumpAvoid schema in the first
place), and hence this field is internally stored so that it can be “played back” in future
interactions with the barrier.

if (d_mhm > d_norm) (17.19)
 in = baf

On second presentation of the barrier in (reflecting a pattern of activity similar to
baf) projects a field of activity over mhm which in turn gives rise to a large value in angle
hence activating the Sidestep motor schema and detouring around the barrier.

Schema Tuning
In terms of schema tuning, the kernel for SorAvoid is tuned every time the BumpAvoid
schema is asserted.

if (tune_tm < 1.5) (17.20)
 tune_tm = tune_tm + tune_tm_base

Additionally in tuningField

tune_tm_layer = tune_tm ^ nslStep(-gapsf) (17.21)
gapsf = gapsf - tune_tm_layer (17.22)

updates the field obstacle avoidance field (gapsf) by subtracting the modulation compo-
nent.

17.4 Simulation and Results1
Different experiments were carried varying the barrier size (10cm and 20cm) as well as
applying learning to the 20cm barrier experiment. The main simulation files are described
in table 17.2:

File Description

detour.nsl contains all the model parameters

detour_sti.nsl contains all the model stimulus specifications

detour_fields.nsl displays different fields

detour_env.nsl displays a top down and visual view of the environment

To execute the model do:

nsl source detour

nsl run

The stimuli specifications are done using the NSL input library described in Appen-
dix III. The detour_sti.nsl file includes parameters for the input layer as follows,

nsl set detour.world.in.dx 1

nsl set detour.world.in.dy 1

nsl set detour.world.in.dz 1

nsl set detour.world.in.xz 0

nsl set detour.world.in.yz 0

nsl set detour.world.in.zz 0

Table 17.2
NSLS script files needed
to run the different
simulations.

3 3 6 C H A P T E R 1 7

The worm specification is given by an input stimulus defined from the NSL input
library as follows,

nsl create BlockStim prey -layer detour.world.in -val 2 \

 -xc $xw -yc $yw -zc $zw -dx 1 -dy 1 -dz 1 -spec_type center

Note that all variables preceded by the “$” symbol corresponds to variable values
from Tcl (see the NSLS scripting language description in chapter 7). The values for these
variables are chosen according to the particular experiment selected through variables
learning and trial as will be described next.

The frog specification is given similarly by an input stimulus defined from the NSL
input library as follows,

nsl create BlockStim frog -layer detour.world.in -val 1 \

 -xc $xf -yc $yf -zc $zf -dx 3 -dy 3 -dz 3 -spec_type center

The barrier (or fence) specification is a little more involved given this time by a set
of input stimuli defined from the NSL input library as follows,

for {set xb $xb_init} {$xb <= $xb_end} {incr xb $gap} {

 nsl create BlockStim fence -layer detour.world.in -val 1 \

 -x0 $xb -y0 $yb -z0 $zb -dx 1 -dy 1 -dz 100 -spec_type

 corner

}

Note that in the above specification the notation and expressions correspond to the
NSLS scripting language extended from Tcl as described in chapter 7.

Experiment I
For experiment I (barrier 10 cm wide) set the following variable in detour_sti.nsl

set learning 0

set trial 10

After executing “nsl run” the system displays on one of the windows the different
module fields as shown in figure 17.5.

L E A R N I N G T O D E T O U R 3 3 7

Figure 17.5
Different activity fields for the 10cm barrier
experiment due to visual_field processing in the frog
with the exception of the bottom one processed after
the tactile field. The top display (gaps) shows the
repulsive field generated from the barrier (note that it
is negative). The next display down (prey_hor)
represents the attraction field generated from the
prey (note that it is positive). The next display down
(mhm) represents the combined gaps and prey_hor
fields. The next display down (wta) represents the
winner-take-all element from the above mhm field.
This winning element results in the heading or frog’s
orientation when moving forwards. The last display
(baf) is currently empty and represents activity due
to bumping against the barrier.

The most important factor in the frog movement direction results from the wta field,
resulting itself from the combination of the prey attraction and barrier repulsion fields. In
this experiment the direction of movement is towards the side of the barrier, heading
towards the right since the frog was positioned just a bit to the right from the axis joining
the center of the prey and barrier. The resulting path motion is shown in figure 17.6.

Figure 17.6
Rana Computatrix interacting with the 10 cm wide
barrier. Note how the frog heads itself towards the side
of the barrier.

3 3 8 C H A P T E R 1 7

Experiment II
For experiment II (barrier 20 cm wide) set the following variable in detour_sti.nsl

set learning 0

set trial 20

After executing “nsl run” the system displays on one of the windows the different
module fields as shown in figure 17.7.

Figure 17.7
Different activity fields for the 20cm barrier experiment
before bumping due to visual_field processing in the
frog with the exception of the bottom one processed
after the tactile field. The top display (gaps) shows the
repulsive field generated from the barrier (note that it is
negative). The next display down (prey_hor) represents
the attraction field generated from the prey (note that it
is positive). The next display down (mhm) represents
the combined gaps and prey_hor fields. The next
display down (wta) represents the winner-take-all
element from the above mhm field. This winning
element results in the heading or frog’s orientation
when moving forwards. The last display (baf) is
currently empty and represents activity due to bumping
against the barrier.

Again, the most important factor in the frog movement direction results from the wta
field, resulting itself from the combination of the prey attraction and barrier repulsion
fields. In this experiment the direction of movement before bumping into the barrier is
towards the middle of the barrier. Once the frog hits the barrier a bumping (baf) field is
generated. The purpose of this field is to redirect the movement towards a different
heading. Before that occurs the frog will backup. The resulting field after bumping is
shown in figure 17.8.

L E A R N I N G T O D E T O U R 3 3 9

Figure 17.8
Different activity fields for the 20cm barrier
experiment after bumping due to visual_field
processing in the frog with the exception of the
bottom one processed after the tactile field. The top
display (gaps) shows the repulsive field generated
from the barrier (note that it is negative). The next
display down (prey_hor) represents the attraction
field generated from the prey (note that it is
positive). The next display down (mhm) represents
the combined gaps and prey_hor fields. The next
display down (wta) represents the winner-take-all
element from the above mhm field. This winning
element results in the heading or frog’s orientation
when moving forwards. The last display (baf) is
represents activity due to bumping against the
barrier.

The resulting path motion after hitting the barrier several times is shown in figure
17.9.

�

�

�

� � �

� �
	

		

Figure 17.9
Rana Computatrix interacting with the 20 cm barrier
before learning. We have added numbers
corresponding to the frog’s position in time. In this
experiment the frog hits the barrier three times before
perceiving the side of the barrier.

3 4 0 C H A P T E R 1 7

Experiment III
For experiment III (barrier 20 cm wide with learning) set the following variable in

detour_sti.nsl

set learning 1

set trial 20

We change the threshold of d_norm to simulate that after one interaction with the
20cm barrier the frog would have learned and from then on it would detour when pre-
sented with the 20 cm barrier. The resulting behavior is shown in figure 17.10.

Figure 17.10
Different activity fields for the 20cm barrier
experiment after learning due to visual_field
processing in the frog with the exception of the
bottom one processed after the tactile field. The top
display (gaps) shows the repulsive field generated
from the barrier (note that it is negative). The next
display down (prey_hor) represents the attraction
field generated from the prey (note that it is
positive). The next display down (mhm) represents
the combined gaps and prey_hor fields. The next
display down (wta) represents the winner-take-all
element from the above mhm field. This winning
element results in the heading or frog’s orientation
when moving forwards. The last display (baf) is
currently empty and represents activity due to
bumping against the barrier.

Note that although no bumping occurs, the mhm field involves a similar integration
where heading is explicitly generated, in this case by learning. The resulting behavior is
shown in figure 17.11.

L E A R N I N G T O D E T O U R 3 4 1

Figure 17.11
Rana Computatrix interacting with
the 20 cm wide barrier after
learning.

17.5 Summary
The model explains basic facts about detour behavior. If the retinotopic representation of
the edge of the barrier in SorRec falls within the prey-attractant-field spread, then the
summation of activity from the prey-attractant-field and from the SOR-repellent map on
MHM at the retinotopic position just beyond the barrier’s edge is stronger then the sum-
mation at the “center” of the barrier where the prey is located. Hence, the winner-take-all
dynamics will select the cluster of activity corresponding to the retinotopic position of the
edge of the barrier, thus predicting that frogs would detour around narrow barriers. On
the other hand, for wide barriers the prey-attractant-field extent falls within a much wider
barrier field. Hence, at the MHM retinotopic position corresponding to the barrier’s edge
there will be no input activity from the prey map. On the other hand, there will be a great
projection of activity on MHM at the retinotopic position of the prey; and this in turn will
trigger approach to a point within the barrier map, so long as the peak of prey attraction
exceeds the trough of barrier inhibition. Thus, the model predicts that the naive frog
would approach wide barriers rather than detour around them.

Notes

1. Preparation of this paper was supported in part by award number IBN-9411503 for
Collaborative Research (M.A. Arbib and A. Weerasuriya, co-Principal Investigators)
from the National Science Foundation.

2. A. Weitzenfeld developed the NSL3.0 version and extended the original NSL2.1
model implementation written by F. Corbacho as well as contributed Section 17.3
and part of 17.4 to this chapter.

3. The Detour model was implemented and tested under NSLC.

