
 
 

 

 

Abstract— In this paper we describe our current work in the 
development of a human-robot interaction architecture to 
enable robot coaching by humans on how to play soccer. This 
approach is analogous to human coaches training soccer players 
to improve their skills and learn advance game strategies prior 
to a game while optimizing those strategies during actual games. 
Our goal is to distinguish between hardwired robot skills and 
higher level abilities learned from a coach. This is analogous to 
walking, running and kicking that are basic human skills in 
contrast to advanced soccer strategies that are learned from a 
coach. While higher level robot abilities could be acquired by 
direct software programming, this approach would limit the 
interaction with human soccer coaches having limited or no 
software programming experience. To achieve this goal, we 
exploit recent developments in cognitive science, particularly 
notions of shared intentions as distributed plans for interaction 
and collaboration between humans and robots. We define 
different sets of voice-driven commands for human-robot 
interaction: (a) action commands requiring robots to perform 
certain behaviors, (b) interrogation commands, i.e. queries, 
requiring a response from the robot, and (c) control structure to 
enable more advanced interaction with the robot including if, 
if-else, while and specialized training expressions. The human 
robot interaction architectures is based on the Aldebaran NAO 
robot platform used in the context of RoboCup soccer standard 
platform league. This platform interacts with the human coach 
via CSLU RAD spoken language system. While preliminary 
work has been previously presented using Sony AIBO, we 
currently describe more advanced human robot interaction 
initially developed using the Webots simulated environment 
before actual experimenting with NAO robots. 

I. INTRODUCTION 

e expect interaction between humans and robots to be 
as natural as interaction among humans. To achieve 
this goal robots need to be capable of high level 

language processing comparable to humans. For this purpose 
our current work emphasizes the development of a domain 
independent language processing system that can be applied 
to arbitrary domains while having psychological validity 
based on knowledge from social cognitive science. In 
particular our architecture exploits: (i) language and meaning 
correspondence relevant to both neurological and behavioral 
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aspects of human language developed by Dominey et al. [1], 
and (ii) perception and behavior correspondence based on the 
notion of shared intentions developed by Tomasello et al. [2, 
3]. The particular domain chosen to test our hypotheses is 
coaching robots to play soccer. While initially robots are 
taught to kick the ball towards the goal at the first available 
opportunity, a simple cognitive task for the robot is to decide 
when to kick and when to pass the ball as shown in Figure 1. 
While this ability may be directly programmed into the robot, 
training instead by a human coach requires higher level 
language processing. 
 

 
Fig. 1. The image shows a typical game scene where an offensive player 
controls the ball but is blocked by a defender from the other team. The 
offensive player needs to decide whereas to kick the ball towards the goal 
even if blocked or pass it to a teammate. 

.   
Preliminary work in human robot coaching was described 

in Weitzenfeld and Dominey [4, 5] where Sony AIBO robots 
learned individual “go” and “shoot” skills corresponding to 
searching for the ball and then kicking towards the goal in the 
context of RoboCup [6], a well documented and standardized 
robot environment that provides a quantitative domain for 
evaluation of success. In the Standard Platform League (SPL) 
two teams of fully autonomous robots play soccer on a 4m x 
6m carpeted soccer field using Aldebaran NAO robots. NAO 
robots use two color-based cameras as primary sensor and 
include wireless communication capabilities to interact with a 
game controller and other robots in the field. The field 
includes two colored goals, yellow and cyan, in addition to 
lines used for robot localization and for human refereeing. 
The ball is of orange ball color with robots having different 
colored “shirts”, blue and red. As with human soccer, players 
need to outperform the opponents by moving faster, 
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processing external information more efficiently, localizing 
and kicking the ball more precisely, in addition to having 
more advanced individual and team behaviors. In general, 
approaches to robot programming vary from direct 
programming to advanced learning approaches. 
Weitzenfeld’s Eagle Knights team has regularly competed in 
the prior four-legged league [7] and now in the two-legged 
league [8].  

While no human intervention is allowed during a game, in 
the future humans could play a decisive role analogous to real 
soccer coaches adjusting in real-time their team playing 
characteristics according to the state of the game, individual 
or group performance, or the playing style of the opponent. 
Furthermore, a software-based coach may become 
incorporated into the robot program analogous to the 
RoboCup simulated coaching league where coaching agents 
can learn during a game and then advice virtual soccer agents 
how to optimize their behavior accordingly (see [9, 10]). Our 
human-robot interaction approach is intended to enable 
human coaches to train robots to play soccer individually and 
in groups.  

In the rest of the paper we describe the human robot 
interaction architecture (Section II), the robot commands 
developed for human interaction (Section III), spoken 
language architecture providing an interface between human 
and robot commands (Section IV), robot training example 
describing the pass or shoot coaching by a human (Section 
V), and conclusions and discussion (Section VI). 

 
Fig. 2. Human robot interaction architecture.  

II. HUMAN ROBOT INTERACTION ARCHITECTURE 

The human-robot interaction architecture, shown in Figure 2, 
consists of the Rapid Application Development (RAD) 
CSLU Speech Tools system [11] connected via Urbi or 
NaoQi to Aldebaran NAO robot or alternatively to the 
Webots simulated environment. Additional components 
integrated to the architecture include Spikenet for advanced 

vision processing and Choregraphe used to design basic arm 
and leg motions. The human coach interacts with RAD 
through voice commands to control the behavior of the NAO. 
These voice commands are translated into regular text 
commands and then transmitted by the external computer 
system to remotely control the behavior of the NAO robot.  

III. ROBOT COMMANDS 

Robots are programmed with a basic set of soccer playing 
behaviors that continuously process external environmental 
information, primarily vision, on order to decide on the next 
action. Additionally, robots need to consider the state of the 
game provide by a referee box common to all robots. Since 
robots are programmed to perform their behaviors 
autonomously, it is necessary to develop voice language 
command to access basic behaviors. We distinguish among 
action commands, interrogation commands or queries and 
control expressions giving the language more structure by 
including, e.g. if-else and do-while statements. 

A. Action Commands  

Action commands take the form described in Table 1. The 
user requests certain action command via the RAD interface 
that immediately requests the robot to perform the 
corresponding behavior. 

Table 1. General form for action commands and robot behavior. 
User Robot 
Action Command Behavior 

Table 2 describes action commands and the corresponding 
behaviors in the robot. Note that certain actions such as Go to 
Ball depend on perceptions, in this case seeing the ball. 

Table 2. Action commands and corresponding robot behavior. 
Action Commands Behavior 
Stop Stop moving 
Walk Walk forward 
Kick Kick the ball forward 
Block Block the ball  
Go to Ball Go to ball and stop in front of it 
Hold  Keep the ball near the robot 
Turn Left Turn left 
Turn Right Turn right 
Turn Left Hold Turn left while holding the ball 
Turn Right Ball Turn right while holding the ball 
Orient To Goal Orient towards the goal  
Shoot  Shoot ball towards goal 
Pass Left Left with ball and kick the ball 
Pass Right Right with ball and kick the ball 

B. Interrogation Commands 

Interrogation commands or queries take the form described in 
Table 3. The user requests certain query via the RAD 
interface that immediately requests the robot to reply with an 
appropriate response. 

Table 3. General form for interrogation commands and robot response. 
User Robot 
Query Response 

Table 4 describes action commands and the corresponding 
behaviors in the robot. Note that certain actions such as Go to 



 
 

 

Ball depend on perceptions, in this case seeing the ball. 

Table 4. Interrogation commands and corresponding robot behavior. 
Queries Description Response 
Ball? Does the robot see the ball? yes = 1, no = 0 
Ball near? Is the robot near the ball? yes = 1, no = 0 
Blue goal? Does the robot see the blue (cyan) 

goal? 
yes = 1, no = 0 

Yellow goal? Does the robot see the yellow goal? yes = 1, no = 0 
Blue goal 
near? 

Is the robot near the blue (cyan) 
goal? 

yes = 1, no = 0 

Yellow goal 
near? 

Is the robot near the yellow goal? yes = 1, no = 0 

Blocked to 
blue goal? 

Are you blocked from the blue 
(cyan) goal? 

yes = 1, no = 0 

Blocked to 
yellow goal? 

Is the robot blocked from the yellow 
goal? 

yes = 1, no = 0 

C. Control Expressions 

While initial version of our human robot interaction system 
were based on action and interrogation commands, we have 
been incorporating basic control structures to the spoken 
language to enable more sophisticated user interaction. 

In Table 5 and Table 6 we describe the basic If and If-Else 
command structures correspondingly.  

Table 5. If-Else control expressions. 
User Robot 
If Query response 
Then Action Command behavior 

Table 6. If-Else control expressions. 
User Robot 
If Query response 
Then Action Command 1 behavior 1 
Else Action Command 2 behavior 2 

 
In Table 7 we describe the basic Do-While command 

structures.  

Table 7. Do-While control expressions. 
User Robot 
While Query response 
Do Action Command behavior 

 
In Table 8 we describe the basic train command structure. 

The train command is important since the train sequence will 
be recorded by the system and stored under the specified 
command name. Later on the trained sequence can be recalled 
in a similar way to other commands. 

Table 8. Train control expressions. 
User Robot 
Train Command Name  
Training Sequence behavior-response sequences 
End Train  

IV. SPOKEN LANGUAGE ARCHITECTURE 

Having human users control and interrogate robots through 
spoken language results in the ability to naturally teach robots 
individual action sequences conditional on perceptual values 
or even more sophisticated shared intention tasks involving 
multiple robots such as passing the ball between robots when 
one of them is blocked or far away from the goal.  

In terms of language processing, Dominey and Boucher 
[12, 13] have developed a system that can adaptively acquire 
a limited grammar by training with human narrated video 
events. An image processing algorithm extracts the meaning 
of the narrated events translating them into action descriptors, 
detecting physical contacts between objects, and then using 
the temporal profile of contact sequences in order to 
categorize the events (see [14]). The visual scene processing 
system is similar to related event extraction systems that rely 
on the characterization of complex physical events (e.g. give, 
take, stack) in terms of composition of physical primitives 
such as contact (e.g. [15, 16]). The visual scene processing 
system was able to perform: (a) scene processing for event 
recognition, (b) sentence generation from scene description 
and response to questions, (c) speech recognition for posing 
questions, (d) speech synthesis for responding, and (e) 
sending and receiving textual communications with the robot. 
We have incorporated some of these capabilities into the 
current system to provide more natural language interaction 
between coach and robot. 

A. Language Mappings  

In terms of language mapping, each narrated event generates 
a well formed <sentence, meaning> pair that is used as input 
to a model that learns the sentence-to-meaning mappings as a 
form of template where nouns and verbs can be replaced by 
new arguments in order to generate the corresponding new 
meanings. Each grammatical construction corresponds to a 
mapping from sentence to meaning. This information is also 
used to perform the inverse transformation from meaning to 
sentence. These templates or grammatical constructions (see 
[17]) are identified by the configuration of grammatical 
markers or function words within the sentences [18]. The 
construction set provides sufficient linguistic flexibility. For 
example, in Table 9, the sentence translates into a set of two 
robot action commands as described in the previous section. 

Table 9. Sentence-meaning mapping example. 
Sentence Meaning  
Kick ball towards goal Orient to goal, kick 

 
Additionally, new <percept, response> constructions can 

be acquired into the language by binding together perceptual 
and behavioral capabilities. Three components are involved 
in <percept, response> constructions: (i) the percept, either a 
verbal command or a sensory system state, e.g. external 
visual information; (ii) the response to this percept, either a 
verbal response or a motor response from the existing 
behavioral repertoire; and (iii) the binding together of the 
<percept, response> construction and its subsequent 
validation that it was correctly learned. The system then links 
and saves the <percept, response> pair so that it can be used 
in the future. This is achieved by using the “train” control 
command previously described storing a sequence of 
behavior-response sequence. An example of such 
constructions is shown in Table 10. 



 
 

 

Table 10. Percept-response mapping. 
Percept Response  
Ball Kick 

B. Spoken Language Processing 

Spoken language processing is done via CSLU-RAD. The 
system defines a directed graph where each node in the graph 
links voice commands to specific behaviors and queries sent 
to the robot as shown in Figure 3. The “select” node separates 
action and interrogation commands. Action commands are 
represented by the “behaviors” node while interrogation 
commands are represented by the “questions” node. Behavior 
nodes include ‘Stop', `Walk', ‘Kick’, ‘Go->ball’, ‘Hold, 
‘TurnL’, ‘TurnR’, ‘TLH’, and TRH; while question nodes are 
‘Ball?’ (‘Do you see the ball?’), ‘BallN? (‘Is the ball near?’), 
‘BGoal’ ('Do you see the blue goal?') and ‘YGoal´ ('Do you 
see the yellow goal?'). Behavior commands are processed by 
the “exec” node while questions are processed by the 
question mark “?” node that waits for a ‘Yes’ or ‘No’ 
response from the robot. Finally, the “Return” node goes back 
to the top of the hierarchy corresponding to the “select” node. 
The “goodbye” node exits the system. 

 
Fig. 3. The CLSU-RAD diagram describes the basic set of behaviors and 
questions that can be sent as voice commands to the robot. 

 
Action and interrogation commands form the basis for 

teaching new behaviors in the system. In particular, we are 
interested in teaching soccer-related tasks at two levels: (i) 
basic behaviors linking interrogations to actions such as “if 
you see the ball then go to the ball” (“Go”), or “if the ball is 
near then kick the ball” (“Shoot”); and (ii) hierarchical 
behaviors composed of previously learnt behaviors such as 
“Go and Shoot”.  To achieve such learning, we have extended 
the CSLU-RAD interface previously shown in Figure 3 to 
enable creation of new behavior sequences as shown in 
Figure 4. The main difference with the previous diagram is 
that after the “questions” node the model saves the response 
and continues directly to the “behaviors” node where actions 
are taken and the sequence stored as part of the teaching 
process. Additionally, all sequences learnt are included as 

new behaviors in the system, e.g. “GO”, “SHOOT”, and 
“GO&SHOOT” nodes. As shown with this example, a 
teaching conversation is represented by a sequence of action 
and interrogation commands: (i) ‘GO’ telling the robot to go 
towards the ball; and (ii) ‘SHOOT’ telling the robot to kick 
the ball towards the goal.  
 

 
Fig. 4. The CLSU-RAD diagram describes the extended set of commands for 
training the robot to Go and Shoot the ball. 

 
In [5] we describe this training sequence in more detail. 

The greatest benefit from this hierarchical training is that 
previously learned skills can be accessed through compact 
expressions as opposed to the full set of training sequences. 
From the robot perspective both basic and hierarchical forms 
perform comparably. 

V. MULTIPLE ROBOT TRAINING EXAMPLE 

In [5] we have described a very basic set of individual 
training of robot behaviors using the CSLU-RAD spoken 
language interface. In this section we describe our current 
work in training multiple robots to perform more advanced 
soccer strategies. Possibly the most basic decision in soccer is 
whether to pass the ball or to shoot it towards the goal. This 
simple decision making can make players and thus teams 
much more effective than their opponents. We have thus 
developed a “Ball Pass” strategy involving two attacking 
robots, a left forward and a right forward, in addition to a 
defender and goalie in the opposing team. The two forward 
robots have two corresponding strategies analyzing whether 
to shoot or pass the ball the companion player:  

 “Ball Pass Right” applied to the left offensive player. 
 “Ball Pass Left” applied to the right offensive player.  

In the next section we describe how we train the two 
offensive players to decide whether to pass or shoot the ball 
towards the goal.   

A. Ball Pass Strategy 

The Ball Pass strategy requires the individual robots to: (a) go 
to the ball, (b) orient towards the goal, and (c) when ready to 
shoot decide if to actually shoot or pass the ball to its 
accompanying offensive player. To initialize the strategy 



 
 

 

both offensive players must be correctly positioned in the 
field as shown in Figure 1. Additionally the two players must 
be able to perform correct passes and most important, they 
must be able to recognize when they are blocked by a 
defender when trying to shoot towards the goal. Thus, the 
actual passing or shooting behavior is decided depending on 
whether the robot can perceive an opening for shooting 
towards the goal. In real soccer there is also the possibility to 
dribble the ball away from the defender, something we are not 
considering in our strategy.  The state diagram for the “Ball 
Pass” strategy is shown in Figure 5. 

 

 
Fig. 5. State diagram for the “Ball Pass” strategy. 

B. Ball Pass Training Sequence 

The “Ball Pass” training sequence is shown in Table 11. The 
left column corresponds to the left offensive player while the 
right column corresponds to the right offensive player. Note 
how both sequences are initiated by the “train” command. 

Table 11. Left offensive (left column) and right offensive (right column) 
player training sequences. 
Left Offensive ‘Ball Pass Right’ 
Training Sequence 

Right Offensive ‘Ball Pass Left’ 
Training  Sequence 

RAD: Select option 
User: Train Ball Pass Right 
RAD: Select option 
User: Go to Ball 
RAD: Select option 
User: Orient to Goal 
RAD: Select option 
User: If blocked from blue goal 
User: Then Shoot 
User: Else Pass Right 
RAD: Select option 
User: End Train 
RAD: Select Option 
User: Goodbye 

RAD: Select option 
User: Train Ball Pass Left 
RAD: Select option 
User: Go to Ball 
RAD: Select option 
User: Orient to Goal 
RAD: Select option 
User: If blocked from blue goal 
User: Then Shoot 
User: Else Pass Left 
RAD: Select option 
User: End Train 
RAD: Select option 
User: Goodbye 

 
The actual execution of the “Ball Pass” strategy is shown in 
Table 12. Again, the left column corresponds to the left 
offensive player while the right column corresponds to the 
right offensive player. 

Table 12. Left offensive (left column) and right offensive (right column) 
players execution commands. 
Left Attacker ‘Ball Pass Right’ 
Command 

Right Attacker ‘Ball Pass Left’ 
Command 

RAD: Select option 
User: Ball Pass Right 
RAD: Select Option 
User: Goodbye 

RAD: Select option 
User: Ball Pass Left 
RAD: Select option 
User: Goodbye 

 
Figures 6-9 show snapshots of the “Ball Pass” strategy. 

 
Fig. 6. Right offensive player passes ball to left offensive player. 
 

 
Fig. 7. Since left offensive player is now blocked by the defender it passes the 
ball back to the right offensive player instead of shooting towards goal. 
 

 
Fig. 8. Right offensive player is now open to shoot the ball towards the blue 
(cyan) goal. 



 
 

 

 

 
Fig. 9. Right offensive player shoots the ball towards the blue (cyan) goal. 

VI. CONCLUSIONS AND DISCUSSION  

We have described in this paper our current research in the 
development of a generalized approach to human-machine 
interaction via spoken language in the context of robot soccer 
that may be extended to other domains. The coaching 
architecture described in the paper exploits recent 
developments in cognitive science - particularly notions of 
grammatical constructions as form-meaning mappings in 
language, and notions of shared intentions as distributed 
plans for interaction and collaboration binding perceptions to 
actions. With respect to social cognition, shared intentions 
represent distributed plans in which two or more 
collaborators have a common representation of an action plan 
in which each plays specific roles with specific 
responsibilities with the aim of achieving some common goal. 
In the current study, the common goals were well defined in 
advance (e.g. teaching the robots new relations or new 
behaviors). As such, the shared intentions could be built into 
the dialog management system. Training sequences were 
developed in the context of RoboCup soccer standard 
platform league where we have been competing for many 
years both in the four-legged and two-legged leagues. We 
used the CSLU-RAD environment for spoken voice human 
interaction with the robots. 

As technical sequences become more complex it is 
important to be able to teach robots them using a more natural 
interaction between humans and robots. In particular the 
dialog pathways are somewhat constrained, with several 
levels of hierarchical structure in which the user has to 
navigate the control structure with several single word 
commands in order to teach the robot a new relation, and then 
to demonstrate the knowledge, rather than being able to do 
these operations in more natural single sentences. In order to 
address this issue, we are reorganizing the dialog 
management where context changes are made in a single step.  

To demonstrate the interaction model we described how to 
coach a robot to play soccer by teaching new behaviors at two 
levels: (i) individual basic behaviors trained from a sequence 

of existing actions and interrogations, and (ii) hierarchical 
multi-robot strategies trained from newly trained sequences. 
In prior work [5] we describe individual basic training such as 
‘GO’ and ‘SHOOT’ tasks. In this paper we extend the 
training to hierarchical multi-robot strategies to “Ball Pass” 
where the robot needs to decide whether to shoot or pass the 
ball. This task is being initially developed using Webots 
simulation environment to be finally tested using Aldebaran 
NAO robots hopefully under real game constraints. 

Finally, our long term goal in human-robot coaching is to 
be able to positively affect team performance during a real 
game similarly to human soccer coaches. 
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