

Appendix III – NSLC Extensions

The NSL C++ (NSLC) version includes a number of extensions not included at the
moment in NSLM, the common language to both C++ and Java versions. We expect that
these extensions will be incorporated into NSLM in the future.

A.III.1 Object Type Extensions
NSLC adds a number of extensions to NSLM object types. Among these the most
important ones are the addition of object type arrays, new object types and a number of
extensions on module connectivity.

Arrays
NSLC adds a dimSpec array specification to any object type definition as follows:

VisiblitySpec ObjectType varName(paramList)dimSpec;

For example a single dimension 10 element private array of ObjX named x can be
defined as follows:

private ObjX x()[10];

where no instantiation parameters are provided in this example. Additional dimensions
are provided by simply adding new brackets with their corresponding element number
specification. An extended example of array usage is shown in the “Face Recognition by
Dynamic Link Matching” model in chapter 18.

Defined Types
NSLC adds additional defined types besides those described in chapter 6.

String
NSL defines two additional charString object types as shown in table A.III.1.

Dimension Type 0 1 2 3 4

charString NslString1 NslString2

Ports
NSLC defines additional charString port object types as shown in table A.III.2.

Dimension Type 0 1 2 3 4

 NslDoutString1 NslDoutString2 charString

 NslDinString1 NslDinString2

Convolution
NSLC adds two additional convolutions methods as shown in table A.III.3 defined for
both vectors and matrices of two dimensions. The type and dimension of z corresponds to
that of y.

Table A.III.1
Additional charString object
types defined in NSLC.

Table A.III.2
Additional charString port
object types defined in NSLC.

4 0 4 A P P E N D I X I I I

Method Expression Description

z = nslConvW(x,y) wrap-edge convolution

z = nslConvC(x,y) copy-edge convolution

Connect
NSLC provides additional nslConnect statements enabling fan-out and fan-in
connections between multiple ports at once (NSLM as described in chapter 6 permits
single port interconnections). Fan-out enables the output of a particular port to be sent
out to a number of input ports at the same time using the following format,

nslConnect (port-out, port-in-list);

where port-out specifies an output port and port-in-list specifies a list of input ports
separated by commas. Each input port is connected to the same output port. Analogous,
fan-in enables the output of a list of port to be sent out to a particular input port using the
following format,

nslConnect (port-out-list, port-in);

where port-out-list specifies a list of output ports separated by commas and port-in
specifies a particular input port. Each output port is connected to the same input port.
Note that in this case the input port would queue data from the different output ports
according to the order in which they are received.

More generally, a list of output ports may be connected to a list of input ports using
the following format,

nslConnect (port-out-list, port-in-list);

where port-out-list specifies a list of output ports and port-in specifies a list of input ports
port both separated by commas.

Disconnect
NSLC provides an additional construct, nslDisconnect, to delete existing connections.
The basic format is as follows,

nslDisconnect (port-out, port-in);

where port-out specifies an output port and port-in specifies an input port.
Similarly to connections, NSLC provides fan-out, fan-in and the more general dis-

connection formats as follows,

nslDisconnect (port-out, port-in-list);

nslDisconnect (port-out-list, port-in);

nslDisconnect (port-out-list, port-in-list);

Relabel
NSLC provides additional nslRelabel statements enabling fan-out and fan-in relabels
between multiple ports at once (NSLM as described in chapter 6 permits single port
relabels). Fan-out enables either a particular output or input port to be relabeled to a
number of output or input ports at the same time, respectively. We use either of the
following formats,

Table A.III.3
Multiplication method.

N S L C E X T E N S T I O N S 4 0 5

nslRelabel (port-out, port-out-list);

nslRelabel (port-in, port-in-list);

Analogous, fan-in enables either a list of output or input ports to be relabeled to a
particular output or input port at the same time, respectively. We use either of the follow-
ing formats,

nslRelabel (port-out-list, port-out);

nslRelabel (port-in-list, port-in);

More generally, a list of either output or input ports may be relabeled to a list of out-
put or input ports, respectively, using the following formats,

nslRelabel (port-out1-list, port-out2-list);

nslRelabel (port-in1-list, port-in2-list);

Delabel
Analogous to nslDisconnect NSLC supports a delabeling (deleting a relabel) construct
nslDelabel. The basic formats are as follows,

nslDelabel (port-out1, port-out2);

nslDelabel (port-in1, port-in2);

where port-out1 and port-out2 specify output port and port-in specifies an input port.
Similarly to disconnections, NSLC provides fan-out, fan-in and the more general

delabel formats as follows,

nslDelabel (port-out, port-out-list);

nslDelabel (port-in, port-in-list);

nslDelabel (port-out-list, port-out);

nslDelabel (port-in-list, port-in);

nslDelabel (port-out1-list, port-out2-list);

nslDelabel (port-in1-list, port-in2-list);

File Manipulation
As described in Appendix I NSL supports reading and writing into external text files.
NSLC additionally supports reading and writing into binary files as shown in chapter 18
with the “Face Recognition with Dynamic Link Architecture” model.

NSLC uses the same basic file manipulation methods described in Appendix I with
an additional optional second argument in the open method describing the type of file
(file-type) being manipulated, text or binary, as shown next:

file.open(interaction-spec,file-type);

As previously discussed in Appendix I interaction-type corresponds to any of the
following: ‘R’ for read only, ‘A’ (all) for both read and write or ‘W’ for write only. Note
that binary files do not separate values with spaces thus the user must read each byte or
character at a time such as in the model described in chapter 18. Since NSLC is based on
C++ the user may take advantage of char and unsigned char types when reading binary
files.

4 0 6 A P P E N D I X I I I

A.III.2 Script Extensions
NSLC adds the following script extensions.

Logs
Log files contain the history of previous user model interaction. This is quite useful in
generating a previous interaction that has not been stored. Scripts can be logged and
saved automatically at the end of the simulation (however, the default is logging false).

nsl set system.log true

There is one default log for the complete simulation. The log file name corresponds
to the model name followed by a dot and a numeric suffix corresponding to the log
version followed by a “log” and it may be specified with a different name by the user. For
example,

nsl set system.logfile maxSelectorModel.1.log

Besides being able to review the log file, it is possible to reload it and execute it as
any other NSLS script.

A.III.3 Input Facility
NSLC includes predefined object classes for the generation of temporal visual stimuli.
These types are usually instantiated inside a special visual input module such as the Visin
module used in the “Retina” model (chapter 10) and the World module used in the
“Learning to Detour” model (chapter 17). Using these object types different stimuli may
be set, with constrains on their location and time when they should appear and disappear.
In the following sections we explain these in more detail.

Object Types
Input object types extend their basic semantics from NSLM numeric types while adding
special functionality for processing visual stimuli. These types vary according to their
dimension and types as shown in table A.III.4.

Dimension Type 0 1 2 3

float NslInputFloat0 NslInputFloat1 NslInputFloat2 NslInputFloat3

double NslInputDouble0 NslInputDouble1 NslInputDouble2 NslInputDouble3

int NslInputInt0 NslInputInt1 NslInputInt2 NslInputInt3

Since the input layer object types are derived from the regular numeric layer types
have the same instantiation parameters as regular layers. The only exception is the 3-
dimensional input array taking four instead of three instantiation arguments. This differ-
ence corresponds to the fact that a 3-dimensional input layer is actually a combination of
two 2-dimensional input layers corresponding to the xy and xz space views (see the
“Learning to Detour” model in chapter 17 as an example of its usage). Thus input layers
may be added with regular layers, and so on. On the other hand the input layer is able to
map visual stimulus objects onto the layer. For example, figure A.III.1 shows an
AreaLevel graph view of a NslInputFloat2 input layer made of 40x40 elements,
containing an object of size 8x4. This example is taken from the Visin module in the
Retina model in chapter 10.

Table A.III.4
Input layer object types
defined in NSLC.

N S L C E X T E N S T I O N S 4 0 7

Figure A.III.1�
A �������	
���	
 input layer
of 40x40 elements containing
a 8x4 stimulus.

Figure A.III.2 shows a Temporal graph view of a NslInputFloat0 input layer,
containing an stimulus appearing at two different time intervals.

Figure A.III.2�
A �������	
���	� with a time
varying stimulus.

Input Processing
Actual input layer processing involves “running” the stimuli specified for the particular
layer. We show how to interactively specify stimuli in the next section. Input layer
processing is achieved by including the following statement inside a module,

input_layer = 0;

input_layer.run();

where input_layer specifies the name of the layer, and run is the method processing any
existing stimuli specification. For example, in the “Retina” model the visual input in is
processed in the Visin module as follows,

in = 0;

in.run();

Note that the input layer is first reset to “0”. This is optional since in some case the
user may want to leave a trail or history of previous stimuli locations as in the “Learning
to Detour” model in chapter 17.

Input Specification
In the current NSLC version all input and stimuli specification takes place interactively
using the NSLS script interpreter. Before being able to specify any stimuli one must

4 0 8 A P P E N D I X I I I

understand the coordinate system used in the input layer and stimuli, shown in figure
A.III.3.

(input.xz,input.yz)

input.dx

input.dy

stim.dx
stim.dy

stim.xc
stim.yc

x

y

j j+1j-1

i

i-1

i+1

j+2

stim.x1
stim.y1

stim.x0
stim.y0

x,y origin

Figure A.III.3�
Input layer and stimulus
specification details.

There are two aspects to input specification. First the coordinate system in the input
layer must be specified. This involves specifying the origin of the coordinate system,
(input.xz,input.yz) and the distance among adjacent elements in the input layer,
(input.dx,input.dy) as shown in figure A.III.3.

These parameters are specified as follows where input in this figure represents the
input_layer name,

nsl set input_layer.par-name par-value

where the different alternatives for par-name with their corresponding par-value types
and descriptions are given in table A.III.5. Note that the input library supports up to 3-
dimensional specifications.

Parameter Type Description

xz int coordinate system x-axis origin element

yz int coordinate system y-axis origin element

zz int coordinate system z-axis origin element

dx numeric distance among adjacent elements in the x-axis

dy numeric distance among adjacent elements in the y-axis

dz numeric distance among adjacent elements in the z-axis

For example, in the “Retina” model the input layer coordinate system is specified as

follows,

nsl set retinaModel.retina.visin.input.xz 0

nsl set retinaModel.retina.visin.input.yz 20

nsl set retinaModel.retina.visin.input.dx 2.0

nsl set retinaModel.retina.visin.input.dy 2.0

Table A.III.5
Input layer parameter
options.

N S L C E X T E N S T I O N S 4 0 9

Once the input layer coordinate system has been specified it is necessary to add
stimuli specifications. The general stimulus specification format is as follows,

nsl create stim-type stim-name -layer input-name -val val \

 [-x0 x0 -y0 y0 -z0 z0] [-xc xc -yc yc -zc zc] \

-dx dx -dy dy -dz dz -vx vx -vy vy -vz vz -spec_type spec-type

These parameters are those shown in figure A.III.3 and specified in more detail in
table A.III.6. In the current NSLC version stim-type can only be set as BlockStim, while
stime-name and input-name are the names of the stimulus and input layer, respectively.

Parameter Type Description

val numeric value taken for the complete stimulus

spec_type string specification format: center [xc,yc] or corner [x0,y0]

x0 numeric stimulus upper left corner x-coordinate

y0 numeric stimulus upper left corner y-coordinate

z0 numeric stimulus upper left corner z-coordinate

xc numeric stimulus center x-coordinate

yc numeric stimulus center y-coordinate

zc numeric stimulus center z-coordinate

dx numeric stimulus width in x-direction

dy numeric stimulus depth in y-direction

dz numeric stimulus height in z-direction

vx numeric stimulus speed in x-direction

vy numeric stimulus speed in y-direction

vz numeric stimulus speed in z-direction

The location of the stimulus may be specified either by setting spec_type to either
corner or center and specifying [x0,y0,z0] or [xc,yc,zc], respectively. For example, the
stimulus shown in figure A.III.1 was specified with the following script,

nsl create BlockStim stim -layer retinaModel.retina.visin.in –

val 1.0 \

 -spec_type center -xc 2.0 -yc 0.0 -dx 4.0 -dy 4.0 -vx 7.6

Note that the actual figure shows the stimulus situated in a new location according to
its initial position, current speed and simulation time elapsed.

Additionally, NSL lets the user define time intervals when a stimulus should appear
using the following format,

nsl create TimeInterval -stim stim-name -t0 t0 -t1 t1

Table A.III.6
Stimulus parameter options.

4 1 0 A P P E N D I X I I I

Table A.III.7 describes the two parameters in more detail.

Parameter Type Description

t0 numeric interval starting time

tz numeric Interval ending time

For example, the stimulus shown in figure A.III.2 was created using the following

script:

nsl create BlockStim stim1 -layer tectum11Model.tectum.in

nsl create TimeInterval -stim stim1 -t0 0.0 -t1 0.3

nsl create TimeInterval -stim stim1 -t0 3.0 -t1 3.3

This creates a time interval between 0.0 and 0.3 and a second one for the same
stimulus between 3.0 and 3.3. Notice that in this example the input layer was actually a
scalar thus no other stimulus parameters were given, including stimulus size or location).

A.III.4 Distribution
One additional extension to the NSLC system currently in development is the distributed
execution environment to make processing more efficient. See the NSLC web site
(http://www.cannes.itam.mx/) for the latest developments.

Table A.III.7
Time interval parameter
options.

