

Robot navigation using stereo-vision
Sylvain Lecorné, ENSEIRB, France

Alfredo Weitzenfeld, ITAM, Mexico

Abstract-- This article aims to present a stereo vision based
algorithm developed for robot navigation. This algorithm has
to analyze the minimum information to find obstacles and
goals.
The algorithm works in an indoor environment with walls,
doors and obstacles. It first calculates the displacement of the
relevant pixels of the pictures, calculate the distances of those
points and then applies a filter to find the doors of the room in
which the robot is. Another algorithm permits the robot to
navigate with that information.
In a robotic context the algorithm has to be fast but efficient.
The algorithm steps are: get pictures from 2 cameras;
calculate contrasts of those pictures; find relevant points
where to calculate displacements and 3-dimensional
information; calculate displacement for those points; convert
displacements into a top view of the environment; find angles
where there probably is a door; determine the angle of the
goal and goe toward.

Index terms—Robot navigation, stereo vision, optic flow,
indoor environment

I. INTRODUCTION

The goal of the project is to create an autonomous robot
able to navigate in an office-type environment using stereo-
vision. The article describes basic stereo vision algorithms;
it then explains the algorithm developed as part of this
work.

II. STEREO VISION

A. Stereo vision concept
In Stereo vision with two parallel cameras intersection lines
from the cameras to an object at an infinite distance will
appear on the same corresponding pixel in the two cameras
while an object close to the cameras will appear at two
different pixel locations. As shown in figure 1, the nearer
the object, the bigger its displacement between pictures.

Fig. 1: Stereo vision with two parallel cameras

Distance computation can be done resolving using the
following equation based on the diagram in figure 2:

d = tan(α1) * a

d = tan(α2) * b

a + b = cameraDistance

 Fig. 2: Stereo vision object distance computation

To calculate the angle α1 or α2 we compute a proportional
relation with the pixel abscise, i.e. the pixel displacement
between the two cameras.

A good approximation is an invert-relation between this
displacement and the distance of the object. In the
algorithm we use that relation:

ntdisplacemeconstd /=
Many animals like mammals use stereo-vision to know
distances to obstacles, food, danger, etc.

B. Optic flow
Some animals interpret visual information in different
ways. Optic flow is the comparison between two pictures
from the same eye (or camera) at two different times, when
the animal or robot is moving [1][2][4]. For example
insects like bees analyze moving pictures in each eye to
calculate distance to obstacles (fig. 3). Another example is
chicken that move their head rapidly back and forward to
generate optic flow to produce three-dimensional
information (fig. 4).

Fig. 3: Bees optic flow generation

Fig. 4: Chicken optic flow generation

C. Algorithm comparison
To compute three-dimensional information with optic flow
we compare two images from one camera at two different
times. Typically the camera movement is perpendicular to
the camera view direction but the movement can also be
parallel to the camera view direction. The advantage is that
we can compute three-dimensional information with only
one camera. In an animal context it is possible to compute
three-dimensional information from eyes where vision does
not cross (one eye sees the left, and the other one sees the
right). In a robotic context we have to know how the robot
moves between the two images to compute the optic flow.

For example if we think the robot moved right but it did a
little rotation it can disturb all the calculations. Furthermore
if an object is moving in the scene it can be wrongly
interpreted as three-dimensional information. If all the optic
flows between two pictures are parallel it does not mean
that they will be horizontal. Indeed if the robot is in an
irregular surface, camera altitude or angle could have
changed easily between continuous pictures as the robot
moves. That forces us to look for optic flows in all
directions.
With stereo vision we get two pictures at the same time
from two cameras. With that method we do not have any
problem with moving objects in the scene. Knowing
exactly the distance of the two cameras we can easily
convert the displacement generated into distance
information. Another advantage is that displacements are
always parallel and in the same direction because cameras
do not move with respect to each other. We only have to
look for displacements in one direction.

III. EXPLANATION OF IMAGE PROCESS AND NAVIGATION
The whole process cycle is made of 6 steps:

• Contrast calculation for left and right pictures:
generates 2 contrasts images.

• Relevant points calculation in the left picture:
generates a Point’s array where we will
calculate displacements.

• Displacement calculation between relevant
points of left picture and best corresponding
point in right picture: generates a Point’s array
representing for each relevant point in the
displacement vector.

• Top-view conversion of displacements
(converted in distances from the robot):
generates an array containing for each relevant
point its distance from the robot.

• Finding doors: generates a curve representing
distance function derivative.

• Navigation: defines angle and distance the robot
has to move to.

A. Contrast calculation
1) Why to calculate contrasts?

Different materials reflect light in different ways. If we get
two images of the same object from two different angles we
can get different colors and different intensities of the same
portion of an object. Furthermore if we use cameras with
automatic regulation of light intensity we can get different
settings for the two angles. In that case it is very difficult to
compare effectively the two images to find the
displacements between each other.
If we take pictures of a single object (without moving the
camera) changing light position and intensity, the contrasts
pictures won’t vary much. That’s why we use contrasts to
attenuate those light problems.
Furthermore in a monochrome area of a picture it is
impossible to compute displacements. We can only
calculate it where some contrast exists. That’s why we also

use contrasts to determine where we can efficiently
calculate displacements.

2) Algorithm
The algorithm we use to calculate contrast in a point
computes the sum of the difference in red, green and blue
between that point and the surrounding points. The result is
the intensity of a grey point. Points with a strong contrast
will appear light while others dark (in our paper we will
invert black and white to make it more visible). We can
note that this algorithm does not normalize the contrast
because it will not affect the process. That is why we
simply do the sum of differences and not the average of
differences.
Contrasts are computed for pictures of the 2 cameras. In
each point we use that formula:

)),(),,((),(
,

jyixPixelyxPixelDiferenceyxContrast
ji

++= ∑
+−=).2.1(()2,1(redpredpabsppDiference

3/)).2.1().2.1(greenpgreenpabsbluepbluepabs −+−

The resulting image after this computation is shown in
figure 5.

Fig. 5: Contrast calculation

B. Relevant points where to calculate displacements
The relevant points to calculate displacements are defined
as the points that contain more disparity (in the left
contrasts picture). To do this we calculate the standard
deviation between the point intensity around the one we are
interested in. A constant minimum value defines if a point
is relevant or not.
These points are relevant for two reasons. The first one is
that if there are not many changes in the picture, the
displacement calculation will not be accurate. The second
reason is that the robot has to know where obstacles and

contrasts making it interesting to analyze those parts
picture. In another way a partition of the picture without
much contrast can be a wall (without enough texture) and
is not interesting to calculate the displacement in each point
of the wall.

doors are. An object or a door will appear with high

of the

 it

Fig. 6: Relevant points calculation (from the left

We can see in figure 6 that there are relevant points
f the

ea

s

C. Displacement calculation
O the displacements we try

re

e
,

),,,1((),,,(

contrasts picture)

(crosses in the right side of the figure) in every part o
picture where there are some changes. We can note that
there are no relevant points near the borders (and more at
the left) of the picture because we can not calculate the
displacement in those areas. Indeed the corresponding ar
in the other picture could be away from the visual angle
because from the right camera perspective, we see object
more towards the right.

nce we know where to calculate
for each point to find the area in the right image that best
corresponds to that area in the left image. For each point
(X+x,Y+y) of the right image around the point (X,Y) we a
interested in calculating the difference between the left and
right image and consider like displacement the vector (x, y)
that minimize that difference (one vector per relevant
point).

AreaDifer ∑ ++=
ji

jYiXPicturePixelDiferenceyxYXnce

)),,2(jyYixXPicturePixel ++++
In the particular case of stereo-vision (and not optic flow),

ve

 that

7.

we know that the two cameras are in the same horizontal
line. For that reason we know that the displacements are
horizontal, and we let y=0 in the formula. Furthermore an
object appears always more towards the left in the right
camera picture than in the left one. That is why we only
have to look for displacements in one direction: x will mo
from the negative value of some parameter to 0.
Another parameter defines the size of the window
permits us to compares areas in the two pictures (in the
formula, i and j will move between the negative and
positive parameter window). This is shown in figure

Fig. 7: Displacement calculation

Fig. 8: Results of displacement calculation (in the left

contrasts picture)

We can see in figure 8 that our algorithm gives us good
results. In the picture we see very clearly that the closest
points generate the biggest displacements. An important
problem with the algorithm is that it is not able to calculate
displacements in areas where there is not much contrast.

D. Top view transformation
Once we have the displacements we convert each one into a
distance from the robot (an inverse relation). If we calculate
optic flows in a 360° (with 10 steps of 36 degrees in our
example) we can compute the complete room where the
robot is. Figure 9 shows what the robot can see with those
10 steps:

Fig. 9: What the robot at best can see

We have seen before that the algorithm permits to calculate
displacements for each relevant point. We then convert

each relevant point (position in X) into an angle to be able
to remember information of 10 displacement calculations
and have distances all around the robot. Figure 10 shows
the result of the algorithm.

Fig. 10: Image computed from the two cameras pictures

with 10 steps of 36 degrees

In those pictures we see that our algorithm permits to
reconstitute the environment room, even if it generates
some wrong points (for example the point closest to the
robot do not correspond to a wall). The picture generated
gives us good enough map information to be able to
navigate.

E. Finding doors
In the algorithm we consider there is a door where the
displacements have important changes. We generate a
curve representing the changes in displacements calculated
as the difference between the moving averages of two
consecutive points. For each point x of the displacements
curve we calculate the point Changes(x) of the changes
curve as:

)1(()(
))1()(()(

−=
−−=

xntDisplacemexageMovingAver
xageMovingAverxageMovingAverAbsxChanges

3/))1()(+++ xntDisplacemexntDisplaceme
If we execute the algorithm in a room with one door the
simulation gives the result shown in figure 11 (the center
curve is a polar representation of the changes curve). We
can see that the two sides of the door generate important
values in the changes curve.
We have seen in figure 10 that the distances computation
can give some undesired points. We use moving averages
to identify these undesired points. These points are then
taken out from further calculation. Indeed an undesired
point will probably be far away from the others points,
tending to generate high values in the resulting curves.

Fig. 11: Changes in the optic flow curve

F. Navigation
A very simple navigation algorithm was developed to test
the previous algorithm. It first computes three-dimensional
information in 360 degrees to find a door. When it finds a
door it only computes three dimensional information with
angles that permit to see the door but not in 360 degrees
(see figure 12).
To find a door, the algorithm looks for the two highest
values of the changes curve and considers the door
direction as the average of the angles corresponding to
those two highest values.
It then goes towards the door (a constant value defines how
much it advances). When the robot passes a door it sees
another one and does the same.

Fig. 12: The diagram shows intermediate steps as the

robot goes from a room to another one

In our example with 4 rooms and 3 doors the robot goes
successfully from the first to the last room and then goes
back to the first one as shown in figures 13 and 14.

Fig. 13: Navigation till the last room

Fig. 14: The robot goes back to the first room

IV. CONCLUSION
The stereo vision algorithm developed is interesting due to
its simplicity and performance. The time it needs to
compute is compatible with real time robotic context. We
have developed it in a simulator with Java 3D. We have to
test it in a real environment with true images and will
probably have to adjust it. In the current model, obstacles in
the room are not considered. This work is still in progress
and many additional issues need to be addressed such as
how to identify hard to recognize doors and distinguish
them from other objects in the environment.
In the future we would have to change door recognition in
order not to interpret an obstacle as a door (an obstacle
generates strong changes in displacements curve). For
example, we can consider that a door is between two areas
with strong changes in optic flows but with distances
further apart. Furthermore the robot should avoid those
obstacles, something that can be done by using repulsion
vector fields. We also need to determine how to interpret
three-dimensional information as obstacles.
The navigation algorithm is still very simple. It just looks
for doors and goes where it finds one. Although it works
well in our simplified simulated environment, we would
need to test it and extend it in more complex scenarios. For

example if the robot enters a room and there is another door
on the same wall we can not know if it will go to each
room.
Some more complex algorithms exist. Many of them use
landmarks to do an abstract map of the environment [5]. In
our example we could do a landmark each time the robot
passes a door and memorize them with angle information
between the doors of a room.
Many algorithms also use neural networks to navigate. We
could try to reproduce biological comportments to do an
algorithm that learns the map to navigate efficiently [3].

V. REFERENCES
[1] S.Sudhir Mohith, 1998, Real Time Interactive Object
Tracking (RIOT), Master´s Thesis, Dept of Computation,
University of Manchester Institute of Science and
Technology, Manchester, U.K.
[2] Selim Temizer, 2003, A Dynamical Model of Visually-
Guided Steering, Obstacle Avoidance, and Route Selection,
International Journal of Computer Vision, vol 54, issues 1-
3, pp 13 – 34, August-September, Kluwer.
[3] F.J. Corbacho and A. Weitzenfeld, 2002, Learning To
Detour, in The Neural Simulation Language: A System for
Brain Modeling, Eds A. Weitzenfeld, M.A. Arbib, A.
Alexander, pp 319-341, MIT Press.
[4] J.L. Barron, D.J. Fleet, and S.S Beauchemin, 1994,
Performance of optical flow techniques, International
Journal of Computer Vision, vol 12, issue 1, pp 43 - 77,
February, Kluwer.
[5] Don Murray and Jim Little, 2000, Using real-time
stereo vision for mobile robot navigation, Autonomous
Robots, vol 8, no 2, pp 161-171.

	INTRODUCTION
	Stereo vision
	Stereo vision concept
	Optic flow
	Algorithm comparison

	Explanation of image process and navigation
	Contrast calculation
	Why to calculate contrasts?
	Algorithm

	Relevant points where to calculate displacements
	Displacement calculation
	Top view transformation
	Finding doors
	Navigation

	Conclusion
	References

