
 Alfredo Weitzenfeld: NSL Neural Simulation Language 1

NSL
Neural Simulation Language

Alfredo Weitzenfeld
Departamento Académico de Computación
Instituto Tecnológico Autónomo de México

Rio Hondo #1, San Angel 01000
México D.F., México

Correspondence:

Alfredo Weitzenfeld
Departamento Académico de Computación
Instituto Tecnológico Autónomo de México
Rio Hondo #1, San Angel 01000
México D.F., México
Phone: (525) 6284060
Fax: (525) 6162211
email: alfredo@lamport.rhon.itam.mx

 Alfredo Weitzenfeld: NSL Neural Simulation Language 2

 1. INTRODUCTION

In the area of neural network simulation many tools have been built to facilitate the scientist in
the task of modeling and simulating neurons at different levels of detail. The more detailed
neuronal models, such as the Hodgkin-Huxley model (Hodgkin and Huxley, 1952), and the
compartmental model (Rall, 1959), permit only the modeling of a few neurons at a time, and are
supported by simulation systems such as GENESIS or NEURON (De Schutter, 1992). The
coarser neural models, such as the leaky integrator model (Arbib, 1989), permit the modeling of
thousands of neurons, and are supported by simulation systems such as NSL (Weitzenfeld, 1991;
Weitzenfeld and Arbib, 1994).

In this article we will focus on the simulation of large neural networks with NSL.

 2. NSL SYSTEM

NSL, Neural Simulation Language, is a general purpose simulation system providing a high-
level language with many constructs and libraries developed to ease the specification of large neural
networks. NSL integrates object-oriented programming methodologies (Wegner, 1990) in its
design and implementation, providing a simulation environment for users with little programming
background, as well as those with more extensive programming expertise, who can use C++
(Stroustrup, 1991) as an extension to NSL's modeling language. NSL is offered as public domain
software (anonymous ftp from usc.edu).

The system, whose architecture is shown in Figure 1, includes a command interpreter for
interactive and batch processing, an X windows graphical interface, and temporal and spatial
displays, including 2D and 3D graphics.

 3. NSL LANGUAGE

In order to model neural networks with NSL (NSL Language Compiler shown in Figure 1) it
is necessary to describe (1) the neurons making up the network, (2) the neurons' interconnections,
and (3) the dynamics of the neurons and their interconnections.

 Alfredo Weitzenfeld: NSL Neural Simulation Language 3

3.1. Neurons

The basic neural model in NSL is the single-compartment neuron, having one output and many
inputs, as shown in Figure 2. The internal state of the neuron is described by a single scalar
quantity, its membrane potential m, which depends on the neuron's inputs and its past history. The
output is described by another single scalar quantity, its firing rate M, and may serve as input to
many other neurons, including itself. As the input to a neuron varies, the membrane potential and
firing rate also vary.

The membrane potential for m is described by the differential equation

om
dm(t)

dt
= f (Sm ,m,t)

which depends on the neuron's input Sm, previous values of m, and time parameter t. om is the time
constant. The choice of f defines the particular neural model utilized. In particular the leaky
integrator model is described by f(Sm,m,t) = -m(t) + Sm(t), or

om
dm(t)

dt
= <m(t) + Sm (t)

The firing rate M, the output of the neuron, is obtained by applying a threshold function to the
neuron's membrane potential,

M(t) = m(m(t))

where m is usually a non-linear function. Some of the most common threshold functions, such as
ramp, step, saturation and sigmoidal, are shown in Figure 3.

In NSL two DATA structures are required to represent a single neuron, one structure
corresponds to the membrane potential and the other one to the firing rate. The notation is as
follows (with a semicolon at the end of each statement):

DATA m;
DATA M;

The membrane potential m is represented by a differential equation

DIFF(m,om) = f(Sm,m);

where DIFF defines a first order differential equation for m with time decay tm (time parameter t is
implicit in the equation). The leaky integrator model corresponds to

 Alfredo Weitzenfeld: NSL Neural Simulation Language 4

DIFF(m,om) = -m + Sm;

The firing rate M is represented simply by

M = m(m);

where m represents the choice of threshold function.

3.2. Interconnections

When building neural networks, the output of a neuron serves as input to other neurons. Links
among neurons carry a connection weight which describes how neurons affect each other. Links
are excitatory or inhibitory depending on whether the weight is positive or negative. The most
common formula for the input to a neuron v is

Sv = wi
i=1

n

- Mi (t)

where Mi(t) is the firing rate of neuron m whose output is connected to the ith input of neuron v ,
and wi is the weight on that link.

For example, a neural network architecture corresponding to the Maximum Selector model (see
Arbib 1989) is shown in Figure 4. u and v represent membrane potential (analogous to m), and U
and V represent firing rate (analogous to M).

The input to neuron v is given by

Sv = w1U1 + w2U2 + w2U2 + + wnUn

while the input to the ui neuron is (there is n such equations)

Sui = wmV + wuiUi + Si

In NSL, these expressions describing interconnections among neurons in the neural network
are described in a similar way. For example, the input to neuron v, represented by Sv, would be
the summation of the outputs of all the neurons u multiplied by the corresponding connection
weights w:

Sv = w1*U1 + w2*U2 + w3*U3 + + wn*Un

The input to neuron ui, is represented by Sui (there is n such equations)

 Alfredo Weitzenfeld: NSL Neural Simulation Language 5

Sui = wm*V + wui*Ui + Si

3.3. Layers and Masks

When modeling thousands of neurons and their interconnections it becomes extremely difficult
to name every single one of them. Since in the brain we often find neural networks structured into
two-dimensional homogeneous neural layers, with regular connection patterns between various
layers, we extend the basic neuron abstraction into neural layers and connection masks.

The computational advantage of introducing such concepts when describing a neural network is
that neural layers and interconnection masks can then be concisely described as higher level data
structures. Instead of describing neurons on a one by one basis, a layer can be described as an
array and, similarly, the connections between layers can be described by a mask storing synaptic
weights. An interconnection among neurons would then be processed by computing a spatial
convolution of a mask and a layer. For example, as shown in Figure 5, if A represents an array of
outputs from one layer of neurons, and B represents the array of inputs to another layer, and if the
mask W(k,l) (for -d)k,l)d) represents the synaptic weight from the A(i+k,j+l) (for -d)k,l)d)
elements to B(i,j) element for each i and j, we then have

B = W(k,l)
l =<d

d

-
k =<d

d

- A(i + k, j + l)

which can be described by a simple expression

B = W*A

In order to support layers and masks, the basic DATA structure in NSL is extended with two
layers types, VECTOR and MATRIX, differing according to the number of dimensions they
have. To simplify matters, masks, which may have any rectangular shape, are also defined as
layers whose values are interpreted in a different way.

For example, the layers of neurons shown in Figure 4 would be described by

VECTOR(S,n);
VECTOR(u,n);
VECTOR(U,n);
DATA(v);
DATA(V);

 Alfredo Weitzenfeld: NSL Neural Simulation Language 6

3.4. Sample Model

The complete set of equations describing the Maximum Selector model, shown in Figure 4,
are:

ou
dui t()

dt
= <ui + wu f ui() < wmg v() < h1 + si , 1) i) n

ov
dv
dt

= <v + wn f ui()
i=1

n

- < h2

where wui is the connection weight for the self connection of ui, and wu1 = wu2 = = wun = wu

and w1 = w2 = = wn (in this particular model these connection weights are the same), h1 and
h2 are constants, and the threshold functions are

f (ui) =
1 ui > 0
0 ui) 0
¨
©
ª

, g(si) =
si si > 0
0 si) 0

¨
©
ª

In NSL the description of the complete model is arranged into modules, the INIT_MODULE
containing re-initialization statements, and the RUN_MODULE containing statements which are
continuously executed as part of the simulation.

The above equations correspond to the following code arranged in two RUN_MODULEs:

RUN_MODULE(U)
{
 DIFF(u,ou) = - u + wu*U - wm*V - h1 + S;
 U = step(u);
}

RUN_MODULE(V)
{
 DIFF(v,ov) = - v + SUM(wn*U) - h2;
 V = ramp(v);
}

Note that S,u, and U are vector layers and all operations are applied to the layer as a whole.
SUM(wn*U) first multiplies the connection weight wn by the firing rate U, and the returns a single

 Alfredo Weitzenfeld: NSL Neural Simulation Language 7

value corresponding to the vector summation of the expression. This is necessary since v is a
single element layer.

 4. DISCUSSION

NSL has been successfully utilized as a simulation tool for both biological and artificial neural
networks, where various types of applications have been developed, such as the visuomotor
coordination model (Arbib and Lee, 1993), and the generation of saccades model (Dominey and
Arbib, 1992). The main challenge in the development of NSL, as well as with other simulation
tools, is on one hand to provide a general purpose user-friendly simulation environment, while at
the same time being as efficient as possible in the time consuming process of neural network
simulation.

As NSL keeps on evolving, it will offer a distributed and parallel framework for the simulation
of neural networks (Weitzenfeld and Arbib, 1991) integrating with schema models, as described in
ASL, Abstract Schema Language (Weitzenfeld, 1993), to enable the development of hierarchical
and distributed neural networks, such as needed in robotics applications (Fagg et al., 1992).

 5. REFERENCES

*Arbib, M.A., 1989, The Metaphorical Brain 2: Neural Networks and Beyond, Wiley.

Arbib, M.A., and Lee, H.B., 1993, Anuran Visuomotor Coordination for Detour Behavior: From
Retina to Motor Schemas, in From Animals to Animats 2 : Proc. of 2nd International
Conference on Simulation of Adaptive Behavior (J.-A. Meyer, H.L. Roitblat, and S. Wilson,
Eds), A Bradford Book/MIT Press :42-51.

*De Schutter, E., 1992, A Consumer Guide to Neuronal Modeling Software, in Trends in
 Neuroscience , 15(11):462-464.

Dominey, P.F., and Arbib, M.A., 1992, A Cortico-Subcortical Model for Generation of Spatially
Accurate Sequential Saccades, Cerebral Cortex , 2:153-175.

Fagg, A.H., King, I.K., Lewis, M.A., Liaw, J.S., Weitzenfeld, A., 1992, A Neural Network
Based Testbed for Modeling Sensorimotor Integration in Robotics Applications, Proc. of
IJCNN '92, Baltimore, MD.

Hodgkin, A.L., and Huxley, A.F., 1952, A quantitative description of membrane current and its
application to conduction and excitation in nerve, J. Physiology , London, 117:500-544.

 Alfredo Weitzenfeld: NSL Neural Simulation Language 8

Rall, W., 1959, Branching dendritic trees and motoneuron membrane resistivity, Exp. Neurol. , 2:
503-532.

*Stroustrup, B., 1991, The C++ Programming Language, 2nd. Ed., Addison-Wesley.

*Wegner, P., 1990, Concepts and Paradigms of Object-Oriented Programming, SIGPLAN ,
 OOPS Messenger , 1(1):7-87, Aug.

*Weitzenfeld, A., 1991, NSL: Neural Simulation Language, Version 2.1, CNE-TR 91-05,
University of Southern California, Center for Neural Engineering, Los Angeles, CA.

Weitzenfeld, A., 1993, A Hierarchical Computational Model for Distributed Heterogeneous
Systems, TR 93-02, Center for Neural Engineering, University of Southern California, Los
Angeles, California, May.

Weitzenfeld, A., and Arbib, M., 1991, A Concurrent Object-Oriented Framework for the
Simulation of Neural Networks, Proceedings of ECOOP/OOPSLA '90 Workshop on Object-
Based Concurrent Programming, SIGPLAN , OOPS Messenger , 2(2):120-124, April.

*Weitzenfeld, A., and Arbib, M.A., 1994, NSL Neural Simulation Language, in Neural Network
 Simulation Environments , Ed. J. Skrzypek, Kluwer (in press).

 Alfredo Weitzenfeld: NSL Neural Simulation Language 9

Figure 1. The NSL simulation system is composed of two units: (1) the Simulator, containing
the Processing Module, NSL Language Compiler, NSL Language Libraries, and NSL Command
Interpreter; (2) the Window Interface, containing the Graphical Displays, and the Graphics
Libraries.

Figure 2. The single-compartment neuron model is represented by one value m corresponding to
its membrane potential, and one value M corresponding to its firing rate. Sm represents the set of
inputs to the neuron. There is a single output.

Figure 3. The figures shows some typical threshold functions.

Figure 4. The neural network shown corresponds to the architecture of the Maximum Selector
model (see Arbib, 1989), where ui and v represent membrane potentials, Ui and V represent firing
rates, Si represent inputs to the network, and wi represent connection weights.

Figure 5 . W represents the connection or convolution mask between layers A and B
corresponding to the equation B=W*A. In this example W is a 3x3 mask which is overlapped
over a window of A to obtain a single value in B.

 Alfredo Weitzenfeld: NSL Neural Simulation Language 10

NSL Language
Compiler

NSL Language
Libraries

Window Interface

Graphical
Displays

Simulator

Graphical
Libraries

NSL Command
Interpreter

NSL Language
File

Processing
Module

NSL
Command

Files

input outputneuron

m M
Sm

saturation sigmoidal

m m

MM

m m

ramp step

m m

MM

m m

 Alfredo Weitzenfeld: NSL Neural Simulation Language 11

v

V

u u u u1 2 3 n

1U 2U 3U nU

1S 2S 3S nS

1w 2w 3w nw

mw

.
u1w u2w u3w unw

A

B

W -connection mask

j

ij

i

